Призма определение призмы. Понятие о призме

«Геометрическое тело призма» - Прямоугольный параллелепипед. Прямоугольник. Диагональные сечения. Теорема Пифагора. Сумма площадей. Вершины. Основание призмы. Как называется призма изображённая на рисунке. Математический бой. Решение. Призма. Какая призма называется прямой. Полученные знания. Диагональ правильной треугольной призмы.

«Фигура призма» - Определение призмы. Наклонная и прямая призма. Докажем сначала теорему для треугольной призмы. Виды призм. Объем наклонной призмы. Призма. Площадь боковой поверхности призмы. Площадь полной поверхности призмы. Докажем теперь теорему для произвольной призмы. Правильная призма.

«Объём призмы» - Площадь S основания исходной призмы. Решение задачи. Цели урока. Объем исходной призмы равен произведению S · h. Объем прямой призмы. Призму можно разбить на прямые треугольные призмы с высотой h. Понятие призмы. Проведение высоты треугольника ABC. Вопросы. Изучение теоремы об объеме призмы. Основные шаги при доказательстве теоремы прямой призмы?

«Понятие призмы» - Площадь полной поверхности призмы. Прямая призма. Площадь боковой поверхности призмы. Многоугольник. Сечения призмы. Правильная призма. Призмы встречающиеся в жизни. Треугольные призмы. Доказательство. Объем наклонной призмы. Определение призмы. Наклонная и прямая призма. Виды призм. Призма.

«Свойства призмы» - Существую ли наклонные призмы, в которые можно вписать сферу. Свойства призмы. Условие, сформулированное для прямой призмы. Цилиндр. Призма. Сечение цилиндра. Формула трех косинусов. Основание. Треугольная призма. Теорема синусов для трехгранного угла. Ребро треугольной призмы. Вокруг каких из разновидностей призм всегда можно описать сферу.

«Понятие многогранника призмы» - В сечении образуется параллелограмм. Следствие. Свойства призмы. Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело). Площадь поверхности призмы и площадь боковой поверхности призмы. Такое сечение называется диагональным сечением призмы. Дано: Сторона основания правильной треугольной призмы равна 8 см, боковое ребро - 6 см.

Определение призмы:

  • А1А2…АnВ1В2Вn– призма

  • Многоугольники А1А2…Аn и В1В2…Вn – основания призмы

  • Параллелограммы А1А2В2В1, А1А2В2В1,… АnА1В1Вn – боковые грани

  • Отрезки А1В1, А2В2…АnBn – боковые ребра призмы


Виды призм

  • Шестиугольная Треугольная Четырехугольная призма призма призма


Наклонная и прямая призма

  • Если боковые ребра призмы перпендикулярны основаниям то призма называется прямой , в противном случае – наклонной .


Правильная призма

  • Призма называется правильной , если она прямая и ее основания - правильные многоугольники.


Площадь полной поверхности призмы


Площадь боковой поверхности призмы

  • Теорема

  • Площадь боковой поверхности прямой призмы равна половине произведения периметра основания на высоту призмы.


Объем наклонной призмы

  • Теорема

  • Объем наклонной призмы равен произведению площади основания на высоту.


Доказательство

  • Доказательство

  • Докажем сначала теорему для треугольной призмы, а затем - для произвольной призмы.

  • 1. Рассмотрим треугольную призму с объ­емом V, площадью основания S и высотой h. Отметим точку О на одном из оснований призмы и направим ось Ох перпендикулярно к основаниям. Рассмотрим сечение призмы плоскостью, перпендикуляр­ной к оси Ох и, значит, параллельной плоскости основания. Обозначим буквой х абсциссу точки пересе­чения этой плоскости с осью Ох, а через S (х) - площадь получившегося сечения.

    Докажем, что площадь S (х) равна площади S основания призмы. Для этого заметим, что треуголь­ники ABC (основание призмы) и А1B1С1 (сечение призмы рассматриваемой плоскостью) равны. В самом деле, четырехугольник АA1BB1 - параллелограмм (отрезки АА1 и ВВ1 равны и параллельны), поэтому А1В1=АВ. Аналогично доказывается, что В1С1=ВС и А1С1=АС. Итак, треугольники А1В1С1 и ABC равны по трем сторонам. Следовательно, S(x)=S. Применяя теперь основную формулу для вычисления объемов тел при а=0 и b=h, получаем



2. h h h, S S * h. Теорема доказана.

    2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h . Выразим объем каждой треуголь­ной призмы по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объем исходной призмы равен S * h. Теорема доказана.


ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Сегодня мы выведем формулу объема наклонной призмы с помощью интеграла.

Вспомним, что такое призма и какая призма называется наклонной?

ПРИЗМА — многогранник, две грани которого (основания) — равные многоугольники, расположенные в параллельных плоскостях, а другие грани (боковые) — параллелограммы.

Если боковые ребра призмы перпендикулярны плоскости основания, то призма прямая, в противном случае призма называется наклонной.

Объем наклонной призмы равен произведению площади основания на высоту.

1) Рассмотрим треугольную наклонную призму ВСЕВ2С2Е2. Объем данной призмы равен V, площадь основания — S, высота — h.

Воспользуемся формулой: объем равен интеграл от 0 до h S от икс дэ икс.

V= , где площадь перпендикулярного оси Ох сечения. Выберем ось Ох, причем точка О — начало координат и лежит в плоскости ВСЕ (нижнее основание наклонной призмы). Направление оси Ох перпендикулярно плоскости ВСЕ. Тогда ось Ох пересечет плоскость в точке h, и проведем плоскость Е1 параллельную основаниям наклонной призмы и перпендикулярную оси Ох. Поскольку плоскости параллельны и боковые грани — это параллелограммы, то ВЕ= , СЕ=С1Е1=С2Е2; ВС=В1С1=В2С2

Откуда следует, что треугольники ВСЕ = E2 равны по трем сторонам. Если треугольники равны, значит, равны их площади. Площадь произвольного сечения S(х) равна площади основания Sосн.

В данном случае площадь основания является постоянной. В качестве пределов интегрирования возьмем 0 и h. Получаем формулу: объем равен интеграл от 0 до h S от икс дэ икс или интеграл от 0 до h площади основания от икс дэ икс, площадь основания - это константа (постоянная величина), мы можем вынести ее за знак интеграла и получится, что интеграл от 0 до h дэ икс равен аш минус 0:

Получается, что объем наклонной призмы равен произведению площади основания на высоту.

2) Докажем эту формулу для произвольной n- угольной наклонной призмы. Для доказательства возьмем пятиугольную наклонную призму. Выполним разбиения наклонной призмы на несколько треугольных призм, в данном случае — на три (так же, как при доказательстве теоремы об объеме прямой призмы). Обозначим объем наклонной призмы за V. Тогда объем наклонной призмы будет состоять из суммы объемов трех треугольных призм (по свойству объемов).

V=V1+V2+V3, а объем треугольной призмы мы ищем по формуле: объем наклонной призмы равен произведению площади основания на высоту.

Значит, объем наклонной призмы равен сумме произведений площадей основания на высоту, выносим высоту h за скобки (так как она одинаковая у трех призм) и получаем:

Теорема доказана.

Боковое ребро наклонной призмы — 4 см, составляет с плоскостью основания угол 30°.Стороны треугольника, которые лежат в основании, равны 12, 12, и 14 см. Найти объем наклонной призмы.

Дано: — наклонная призма,

АВ = 12 см, ВС = 12 см, АС = 14 см, В = 4 см, BK = 30° .

Найти: V - ?

Дополнительное построение: В наклонной призме проведем высоту Н.

Мы знаем, что объем наклонной призмы равен произведению площади основания на высоту.

В основании наклонной призмы лежит произвольный треугольник, у которого известны все стороны, значит, применим формулу Герона: площадь треугольника равна квадратному корню из произведения пэ на разность пэ и а, на разность пэ и бэ, на разность пэ и цэ, где пэ — полупериметр треугольника, который ищем по формуле: половина суммы всех сторон а, в и с:

считаем полупериметр:

Подставим значение полупериметра в формулу площади основания, упростим и получим ответ: семь корней из 95.

Рассмотрим ΔB H. Он прямоугольный, так как Н - высота наклонной призмы. Из определения синуса, катет равен произведению гипотенузы на синус противолежащего угла

значение синус 30° равен одной второй, значит

Мы узнали, что

А высота Н - высота наклонной призмы — равна 2.

Следовательно, объем равен

«Объём тел» - Ф(x). Ф(х1). Объем наклонной призмы, пирамиды и конуса. Ф(хi). Ф(х2). a x b x. При а =х и b=x в сечение может вырождаться точка, например, при х = а.

«Объем понятия» - 1.Площадь полной поверхности куба равна 6 м2. Или объём прямоугольного параллелепипеда равен произведению площади основания на высоту. Объём цилиндра равен произведению площади основания на высоту. В ходе урока проводится дифференцированная проверочная работа с использованием тестов. Объёмы геометрических тел.

«Объёмы» - Упражнение 7. Упражнение 8*. Боковые ребра равны 3 и составляют с плоскостью основания угол 45о. Объем наклонной призмы 3. Гранью параллелепипеда является ромб со стороной 1 и острым углом 60о. Объем наклонной призмы 1. Ответ: Плоскость, проходящая через центры симметрии параллелепипедов. Принцип Кавальери.

«Объёмы тел» - Объём пирамиды равен одной трети произведения основания на высоту. Объём пирамиды. Объём цилиндра. 2010 г. h. V=1/3S*h. Объемы подобных тел. V=a*b*c. Объём прямой призмы. Объемы тел. Следствие. Объём наклонной призмы. Объём наклонной призмы равен произведению площади основания на высоту. Объём цилиндра равен произведению площади основания на высоту.

Объем является характеристикой любой фигуры, имеющей ненулевые размеры во всех трех измерениях пространства. В данной статье с точки зрения стереометрии (геометрии пространственных фигур) мы рассмотрим призму и покажем, как находить объемы призм различного вида.

Стереометрия располагает точным ответом на этот вопрос. Под призмой в ней понимают фигуру, образованную двумя многоугольными одинаковыми гранями и несколькими параллелограммами. На рисунке ниже показаны четыре разные призмы.

Каждую из них можно получить следующим образом: необходимо взять многоугольник (треугольник, четырехугольник и так далее) и отрезок определенной длины. Затем каждую вершину многоугольника следует перенести с помощью параллельных отрезков в другую плоскость. В новой плоскости, которая будет параллельна исходной, получится новый многоугольник, аналогичный выбранному изначально.

Призмы могут иметь разный тип. Так, они могут быть прямыми, наклонными и правильными. Если боковое ребро призмы (отрезок, соединяющий вершины оснований) перпендикулярно основаниям фигуры, то последняя является прямой. Соответственно, если это условие не выполняется, то речь идет о наклонной призме. Правильная фигура — это прямая призма с равноугольным и равносторонним основанием.

Объем правильных призм

Начнем с самого простого случая. Приведем формулу объема призмы правильной, имеющей n-угольное основание. Формула объема V для любой фигуры рассматриваемого класса имеет следующий вид:

То есть для определения объема достаточно рассчитать площадь одного из оснований S o и умножить ее на высоту h фигуры.

В случае правильной призмы обозначим длину стороны ее основания буквой a, а высоту, которая равна длине бокового ребра, буквой h. Если основание n-угольник правильный представляет, то для расчета его площади проще всего воспользоваться следующей универсальной формулой:

S n = n/4*a2*ctg(pi/n).

Подставляя в равенство значение числа сторон n и длину одной стороны a, можно вычислить площадь n-угольного основания. Отметим, что функция котангенса здесь вычисляется для угла pi/n, который выражен в радианах.

Учитывая записанное для S n равенство, получаем конечную формулу объема призмы правильной:

V n = n/4*a2*h*ctg(pi/n).

Для каждого конкретного случая можно записать соответствующие формулы для V, но все они однозначно следуют из записанного общего выражения. Например, для четырехугольной призмы правильной, которая в общем случае является прямоугольным параллелепипедом, получаем:

V 4 = 4/4*a2*h*ctg(pi/4) = a2*h.

Если в этом выражении принять h=a, то мы получаем формулу для объема куба.

Объем прямых призм

Отметим сразу, что для прямых фигур не существует общей формулы для вычисления объема, которая была приведена выше для правильных призм. При нахождении рассматриваемой величины следует использовать исходное выражение:

Здесь h — это длина бокового ребра, как и в предыдущем случае. Что касается площади основания S o , то она может принимать самые разные значения. Задача расчета у прямой призмы объема сводится к нахождению площади ее основания.

Расчет величины S o следует проводить, исходя из особенностей самого основания. Например, если оно является треугольником, тогда площадь вычислить можно так:

Здесь h a — апофема треугольника, то есть его высота, опущенная на основание a.

Если основанием является четырехугольник, то он может быть трапецией, параллелограммом, прямоугольником или иметь совершенно произвольный тип. Для всех названых случаев следует воспользоваться соответствующей формулой планиметрии для определения площади. Например, для трапеции эта формула имеет вид:

S o4 = 1/2*(a 1 + a 2)*h a .

Где h a — высота трапеции, a 1 и a 2 — это длины ее параллельных сторон.

Чтобы определить площадь для многоугольников более высокого порядка, следует разбивать их на простые фигуры (треугольники, четырехугольники) и рассчитывать сумму площадей последних.

Объем наклонных призм

Это самый сложный случай расчета объема призмы. Общая формула для таких фигур также применима:

Тем не менее, к сложности нахождения площади основания, представляющего многоугольник произвольного типа, добавляется проблема определения высоты фигуры. Она в наклонной призме всегда меньше длины бокового ребра.

Проще всего эту высоту найти, если известен какой-либо угол фигуры (плоский или двугранный). Если такой угол дан, тогда следует с его использованием построить внутри призмы прямоугольный треугольник, который бы содержал в качестве одной из сторон высоту h и, пользуясь тригонометрическими функциями и теоремой Пифагора, найти величину h.

Геометрическая задача на определение объема

Дана правильная призма с треугольным основанием, имеющая высоту 14 см и длину стороны 5 см. Чему равен объем треугольной призмы?

Поскольку речь идет о правильной фигуре, то мы вправе воспользоваться известной формулой. Имеем:

V 3 = 3/4*a2*h*ctg(pi/3) = 3/4*52*14*1/√3 = √3/4*25*14 = 151,55 см3.

Треугольная призма является достаточно симметричной фигурой, в форме которой часто выполняют разные архитектурные сооружения. Эту призму из стекла используют в оптике.

Понятие о призме. Формулы объема призм разного типа: правильной, прямой и наклонной. Решение задачи — все о путешествиях на сайт