Логические схемы 1. Цифровые логические элементы

2.1 Основные определения

Электронные схемы, построенные только на логике, называют комбинационными. Выход или выходы зависят только от комбинации переменных на входах.

В отличие от таких же схем, содержащих элементы памяти (например, триггеры), которые называют последовательностными. Последовательностные, так как выход (выходы) зависят не только от комбинации переменных, но и от состояния элементов памяти (последовательности записи в них).

Выделяют три основных вида логических элементов: 1 Выполняют операцию сложения (сумматор). Дизъюнкция.

F = x1 + x 2

F = x1 + x 2 + ... + x n

2 Выполняют операцию умножения. Конъюнкция.

F = x1 x 2 ... x n

F = x1 x2

3 Выполняют отрицание.

F = x

Логические элементы, реализующие эти операции, называют простейшими, а те, которые содержат несколько простейших, называют комбинированными.

Большая часть логических элементов сложения, умножения выполняется с отрицанием. Их типовая характеристика в статическом режиме имеет вид, изображенный на рисунке 2.1.

U пом+ U пом−

Рисунок 2.1 – Статическая характеристика логических элементов с отрицанием

U пом + – помеха, которая выводит логический элемент из устойчивого состояния

М на начало активной области в точку А (см. рисунок 2.1).

U пом − – помеха, выводящая из устойчивого состояния N в подножье активной области точки Б.

U - активная область, рабочая точка в этой области перемещается скачком,

и большинство логических элементов имеет ограничение по времени нахождения рабочей точки в этой области. Внутри между точками А и Б можно устанавливать рабочую точку только радиолюбителям.

В зависимости от цифровых величин U пом + , U пом − выделяют три вида логических схем:

- низкая помехоустойчивость (0,3÷0,4 долей вольта);

- средняя помехоустойчивость (0,4÷1 В);

- высокая помехоустойчивость (выше 1 В).

К схемам с высокой помехоустойчивостью относятся диодные логические схемы (до нескольких кВ); станковая логика (10÷15 В); комплементарная логика КМОП (6÷8 В).

По быстродействию выделяют четыре типа:

- время задержки менее 5 нс – сверхбыстродействие;

- 5÷10 нс – быстродействующая логика;

- 10÷50 нс – малое быстродействие;

- более 50 нс – медленнодействующие логические схемы.

Важным параметром является потребление мощности.

1 Выделяют микромощные логические схемы от одного до десятков мкВт на корпус. Обычно это КМОП–логика (см. КМОП–ключи) или логика с инжекционным питанием.

2 Логика со средним потреблением мощности от одного до десятков мВт на корпус. Обычно это ТТЛ–логика.

3 Логика с высоким потреблением мощности (сотни мВт на корпус).

Ранее была тенденция: чем больше потребление, тем выше быстодействие, потому что элементы транзисторов различных типов переключаются наиболее быстро в активной области (в этой области наибольшее потребление).

Выделяют

диодные логические схемы (наиболее простые);

транзисторно–транзисторные (ТТЛ–логика);

эмиттерно–связная логика (ЭСЛ) – разновидность ТТЛ, отличие в эмиттерных связях, режиме и отрицательном питании, поэтому логику еще называют отрицательной в отличие от положительной логики ТТЛ (+2...5В). Для соединения, согласования их друг с другом, применяют схемы согласования ПУ (преобразователи уровня К500, ПУ124, ПУ125, К176 ПУ1, ПУ10).

логика с инжекционным питанием И 2 Л – разновидность ТТЛ–логики (И2 – интегральная с инжекционным питанием).

– КМОП–логика – разновидность ТТЛ, но на УТ разного типа проводимости.

ОПТЛ – (оптронные связи, транзисторная логика) дает гальваническую развязку.

логика ПТШ, использующая полевые транзисторы Шоттки.

логические матрицы.

По температурному запасу выделяют

микросхемы широкого применения с температурным диапазоном -10°С…+70°С

микросхемы специального применения -60°С… +125°С

Выделяют также по числу входов и по нагрузочной способности

с малым числом входов m до десяти

с большим числом входов – свыше десяти

с малой нагрузочной способностью n, равной единице.

Под нагрузочной способностью подразумевают количество однотипных логических схем, которые можно подключить к выходу точно такой же логической схемы. Малую нагрузочную способность имеют пассивные логические схемы.

со средней нагрузочной способностью n до десяти

с высокой нагрузочной способностью n>10

2.2 Диодные логические схемы

Это самые простые схемы, имеют наивысшую помехоустойчивость. Число входов в среднем достигает десяти. Нагрузкой обычно является один элемент. Имеется ввиду, что нагрузка - точно такой же ЛЭ. Малая нагрузочная способность потому, что эти схемы относятся к пассивным, нет усилителей мощности. Частотный диапазон невысокий (до 1 МГц), так как объединенные параллельные диодные входы эквивалентны объединению параллельных конденсаторов, которые заряжаются, разряжаются. На это необходимо время, снижается быстродействие.

На рисунке 2.2 представлена диодно–логическая схема сложения.

Рисунок 2.2 – Диодно–логическая схема сложения

Возможны два состояния:

1 Входы соединены с землей через открытые выходы таких же логических схем. Иногда принимают это состояние эквивалентным соединению всех входов с землей посредством проводников.

2 Для того, чтобы открыть диоды необходимо подать напряжение, уровень которого в несколько раз больше зоны нечувствительности диодов.

5 В – минимальное стандартное напряжение, но оно может быть и 500 В и 5 кВ, если диоды высоковольтные. В этом случае и нагрузочная способность может быть больше единицы, но потребление схем становится большим.

Схема работает следующим образом. Принимаем, что на вход Х1 подается высокий уровень напряжения, который называется единицей. Этот уровень должен поступать с выхода точно такой же логической схемы, или каким-то другим способом, имитирующим те же условия. Но так как единица поступает только на вход Х1, то на остальных входах Х2…Хn должны быть нули. Они тоже должны быть организованы выходами таких же логических схем. В простейшем случае это могут быть проводники (перемычки), соединяющие входы Х2…Хn с землей. Следовательно, диод VD1 будет открыт, высокий уровень Х1 через VD1 проходит на выход, на котором выделяется также этот высокий уровень, из которого вычитается падение напряжения на диоде. Т.е. на выходе будет уже меньший высокий уровень, тем не менее, его называют единицей. Диоды VD2… VDn в это время будут закрыты, так как на входах Х2…Хn низкие уровни, их барьерные емкости включены параллельно, накапливают заряд.

Если теперь подать высокий уровень на вход Х2, то откроется VD2 но состояние выхода F почти не изменится, т.е. там сохраняется высокий уровень – единица. То же самое будет при подаче единицы на все входы одновременно. Таким образом, удовлетворяется операция логического сложения.

Принцип двойственности состоит здесь в том, что если единицами назвать низкие уровни на входах и на выходе, то эта логическая схема сложения будет выполнять логическую операцию умножения (см. рисунок 2.2).

Программное обеспечение для разработки и симулирования цифровых логических схем.

Программа Logisim имеет простой графический интерфейс и в первую очередь применяется в качестве образовательного инструмента. Приложение включает в себя: панель инструментов, строку меню, панель проводника (со списком схем и инструментов загруженных библиотек), таблицу атрибутов выделенного компонента или инструмента и рабочее окно с компонентами схемы.

Программа Logisim имеет обширную библиотеку. Среди основных элементов можно отметить: блок логических элементов (управляемый инвертор и буфер, НЕ, ИЛИ, И, четность и нечетность и т.д.), элементы проводки (разветвитель, датчик, контакт, согласующий резистор, передаточный вентиль, тоннель и т.д.), элементы ввода/вывода (кнопка, клавиатура, джойстик, светодиод, семисегментный индикатор, терминал, светодиодная матрица и т.д.), набор мультиплексоров, блок арифметических операций (сумматор, множитель, вычитатель, делитель, компаратор, отрицатель и т.д.), элементы памяти (триггеры, регистры, ОЗУ и ПЗУ, счетчики, генераторы случайных чисел и т.д.). Приложение также позволяет рисовать вертикальные/горизонтальные проводники и осуществляет их автоматическое подключение к элементам схем.

Программа Logisim дает возможность не только рисовать цифровые схемы, но и симулировать их поведение. При этом просчет процессов происходит прямо в ходе редактирования схемы – изменяются значения на входах/выходах, элементы вывода отображают соответствующую информацию, обновляется состояние устройств памяти, а провода в зависимости от значений меняют свой цвет. Для схем с тактовыми генераторами моделирование можно осуществлять либо потактово, либо путем установки максимальной тактовой частоты.

Одной из важнейших возможностей программы Logisim является создание подсхем с целью повторного применения уже спроектированных частей, а также для упрощения процесса отладки. Приложение включает небольшой редактор векторной графики, способный менять внешний вид и расположение контактов подсхем при их добавлении в другие схемы. Еще один модуль – «Комбинационный анализ» – позволяет преобразовывать данные между логическими выражениями, логическими схемами и таблицами истинности, давая возможность конвертировать информацию во всех направлениях. Все провода в программе Logisim имеют один из семи цветов, несущих информацию об их назначении. Провода можно собирать в пучки с назначением порядка входа в пучок. Кроме того поддерживается: создание на языке Java пользовательских библиотек компонентов, привязка любого инструмента к определённой комбинации клавиш, вывод полной статистики по количеству и типам компонентов, содержащихся в схеме. Необходимо отметить, что программа Logisim не дает возможности работать с аналоговыми элементами.

Программа Logisim была разработана преподавателем Hendrix College, профессором Карлом Берчем (США, штат Арканзас, город Конуэй). Перевод на русский язык был выполнен Ильей Лиловым. Данный инструмент моделирования логических схем впервые появился в 2001 году, и с тех пор регулярно обновляется и дополняется.

Приложение Logisim является свободным программным обеспечением (лицензия GNU GPL). Софт включает в себя: справку по элементам библиотеки, полное руководство пользователя и краткое пособие для начинающих.

Программа Logisim представлена на русском (включая полную документацию), английском, немецком, испанском, португальском и греческом языках.

Для работы рассматриваемого конструктора схем необходимо наличие пакета Java Runtime Environment (5 версии или более поздней). Программа Logisim является кроссплатформенным программным обеспечением и работоспособна на операционных системах: Microsoft Windows (поддерживаются все последние версии), MacOS, Linux и Solaris. Дистрибутив приложения содержит один исполняемый файл, не требующий установки.

Распространение программы: бесплатная.

Форматы файлов Logisim: CIRC

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ

Общие сведения.

Выше отмечалось, что логические функции и их аргументы принимают значение лог.0 и лог.1. При этом следует иметь в виду, что в устройствах лог.0 и лог.1 соответствует напряжению определенного уровня (либо формы). Наиболее часто используется два способа физического представления лог.0 и лог.1: потенциальный и имульсный .

При потенциальной форме (рис. 2.1,а и 2.1,б) для представления лог.0 и лог.1 используется напряжение двух уровней: высокий уровень соответствует лог.1 (уровень лог.1 ) и низкий уровень соответствует лог.0 (уровень лог.0 ). Такой способ представления значений логических величин называется положительной логикой. Относительно редко используют так называемую отрицательную логику, при которой лог.1 ставят в соответствии низкий уровень напряжения, а лог.0 - высокий уровень. В дальнейшем, если это не оговаривается особо, будем пользоваться только положительной логикой.

При импульсной форме лог.1 соответствует наличие импульса, логическому 0 - отсутствие импульса (рис.2.1, в).

Заметим, что, если при потенциальной форме соответствующая сигналу информация (лог.1 либо лог.0) может быть определена практически в любой момент времени, то при импульсной форме соответствие между уровнем напряжения и значением логической величины устанавливается в определенные дискретные моменты времени (так называемые тактовые моменты времени), обозначенные на рис.2.1,в целыми числами t = 0, 1, 2,...

Общие обозначения логических элементов.




Логические элементы базиса И, ИЛИ, НЕ на дискретных компонентах.

диодный элемент ИЛИ (сборка)

Логический элемент ИЛИ, выполняемый на диодах, имеет два и более входов и один выход. Элемент может работать как при потенциальном, так и при импульсном представлении логических величин.

На рис. 2.2,а приведена схема диодного элемента для работы с потенциалами и импульсами положительной полярности. При использовании отрицательной логики и отрицательных потенциалов, либо импульсов отрицательной полярности необходимо изменить полярность включения диодов, как показано на рисунке 2.2,б.

Рассмотрим работу схемы на рис. 2.2,а. Если импульс (либо высокий потенциал) действует лишь на одном входе, то открывается подключенный к этому входу диод и импульс (либо высокий потенциал) передается через открытый диод на резистор R. При этом на резистре R образуется напряжение той полярности, при которой диоды в цепях остальных входов оказываются под действием запирающего напряжения.

рис. 2.2.

Если сигналы, соответствующие лог.1, одновременно поступают на несколько входов, то при строгом равенстве уровней этих сигналов откроются все диоды, подключенные к этим входам.

Если сопротивление открытого диода мало по сравнению с сопротивлением резистора R, уровень выходного напряжения будет близок к уровню входного сигнала независимо от того, на скольких входах одновременно действует сигнал лог.1.

Заметим, что если уровни входных сигналов разнятся, то открывается лишь диод того из входов, уровень сигнала на котором имеет наибольшее значение. На резисторе R образуется напряжение, близкое к наибольшему из напряжений, действующих на входах. Все остальные диоды закрываются, отключая от выхода источники с малым уровнем сигнала.

Таким образом, на выходе элемента образуется сигнал, соответствующий лог.1, если хотя бы на одном из входов действует лог.1. Следовательно, элемент реализует операцию дизъюнкции (операцию ИЛИ).

Рассмотрим факторы, влияющие на форму выходного импульса. Пусть элемент имеет n входов и на один из них подан прямоугольный импульс напряжения от источника с выходным сопротивлением R вых. Подключенный к этому входу диод открыт и представляет собой малое сопротивление. Отсальные диоды закрыты, емкости С д их p-n - перходов через выходные сопротивления подключенных ко входам источников оказываются включенными параллельно выходу элемента. Вместе с емкостью нагрузки и монтажа С н образуется некоторая эквивалентная емкость С эк = С д + (n-1)С д, подключенная параллельно R (рис. 2.3,а).

В момент подачи на вход импульса из-за емкости С эк напряжение на выходе не может возрасти скачком; оно растет по экспоненциальному закону с постоянной времени

(так как R вых < R), стремясь к значению U вх R/(R + R вых).

рис. 2.3.

В момент окончания входного импульса напряжение на заряженном конденсаторе С эк не может упасть скачком; оно снижается по экспоненциальному закону с постоянной времени (в это время все диоды оказываются закрытыми); т.к. длительность среза выходного импульса больше длительности его фронта (рис.2.3,б). Подача следующего импульса на вход элемента допускается лишь после того, как остаточное напряжение на выходе от действия предыдущего импульса снизится до определенного малого значения. Поэтому медленный спад выходного напряжения вызывает необходимость увеличения тактового интервала и, следовательно, является причиной снижения быстродействия.

диодный элемент И (схема совпадения)

Логический элемент И имеет один выход и два или более входов. Диодный элемент И может работать с информацией, представленной как в потенциальной, так и в импульсной форме.

На рис.2.4,а приведена схема, используемая при положительных значениях входных напряжений. При использовании отрицательной логики и отрицательных входных напряжений, либо импульсов отрицательной полярности необходимо изменить полярность напряжения источника питания и полярность включения диодов (рис. 2.4,б).

рис. 2.4.

Пусть на одном из входов цепи на рис.2.4,а действует низкий уровень напряжения, соответствующий уровню лог.0. Ток будет замыкаться в цепи от источника E через резистор R, открытый диод и источник низкого входного напряжения. Так как сопротивление открытого диода мало, то низкий потенциал со входа через открытый диод будет передаваться на выход. Диоды, подключенные к остальным входам, на который действует высокий уровень напряжения, оказываются закрытыми. Действующее на диоде напряжение можно определить суммированием напряжений при обходе внешней по отношению к диоду цепи от его анода к катоду. При таком обходе напряжение на диоде оказывается равным U д = U вых - U вх. Таким образом, выходное напряжение, прикладываемое к анодам диодов, является для них положительным, стремящимся открыть диоды; входное напряжение, прикладываемое к катоду, - отрицательным, стремящимся закрыть диод. И если u вых < u вх, то U д отрицательно и диод закрыт. Именно поэтому, когда на выходе элемента низкий потенциал (уровень лог.0), а на входе высокий потенциал (уровень лог.1), подключенный к этому входу диод оказывается закрытым.

Таким образом, если хотя бы на одном из входов действует напряжение низкого уровня (лог.0), то на выходе элемента образуется напряжение низкого уровня (лог.0).

Пусть на всех входах действуют напряжения высокого уровня (лог.1). Они могут несколько отличаться по значению. При этом будет открыт тот диод, который подключен ко входу с более низким напряжением. Это напряжение через диод будет передаваться на выход. Остальные диоды будут практически закрыты. На выходе установится напряжение высокого уровня (лог.1).

Следовательно, на выходе элемента устанавливается напряжение уровня лог.1 в том и только в том случае, когда на всех входах действует напряжение уровня лог.1. Таким образом, убеждаемся в том, что элемент выполняет логическую операцию И.

Рассмотрим форму выходного импульса (рис.2.5).

Будем считать, что к выходу подключен некоторый эквивалентный емкостной элемент С эк, емкость которого включает в себя емкости нагрузки, монтажа и закрытых диодов. В момент подачи импульса напряжения одновременно на все входы напряжение на С эк (на выходе элемента) не может возрасти скачком. Все диоды вначале оказываются закрытыми входными напряжениями, являющимися для диодов отрицательными. Поэтому источники входных сигналов будут отключены от С эк. Конденсатор С эк заряжается от источника Е через резистор R. Напряжение на конденсаторе (а значит и на выходе элемента) растет по экспоненциальному закону с постоянной времени (рис. 2.5,б). В момент времени, когда u вых превысит минимальное из входных напряжений, откроется соответствующий диод и рост u вх прекратится. Ток от источника Е, ранее замыкавшийся через С эк, переключается в цепь открытого диода.


рис. 2.5.

В момент окончания входных импульсов все диоды открываются положительным для них напряжением u вых. Происходит относительно быстрый разряд С эк через открытые диоды и малые выходные сопротивления источников входных сигналов. Напряжение на выходе снижается по экспоненциальному закону с малой постоянной времени .

Сравнение форм выходных импульсов диодных элементов ИЛИ и И показывает, что в элементе ИЛИ оказывается более растянутым срез импульса, в элементе И - его фронт.

транзисторный элемент НЕ (инвертор)

рис. 2.6.

Операция НЕ может быть реализована ключевым элементом, представленным на рис. 2.6,а. Следует иметь в виду, что этот элемент выполняет операцию НЕ только при потенциальной форме представления логических величин. При низком уровне входного сигнала, соответствующем лог.0, транзистр закрыт, на его выходе устанавливается напряжение высокого уровня Е (лог1). И наоборот, при высоком уровне входного напряжения (уровне лог.1) транзистр насыщен, на его выходе устанавливается напряжение, близкое к нулю (уровня лог.0). Графики входных и выходных напряжений представлены на рис. 2.6,б.

Интегральные логические элементы базиса И-НЕ и их параметры.

Интегральные логические элементы используются при потенциальной форме представления логических величин.

Схема интегрального элемента И-НЕ типа ДТЛ показана на рис. 2.7. Элемент может быть разбит на две последовательно включенные функциональные части. Входные величины подаются на часть, представляющую собой диодный логический элемент И. Вторая часть элемента, выполненная на транзисторе, представляет собой инвертор (выполняющий операцию НЕ). Таким образом, в элементе последовательно выполняются логические операции И и НЕ и, следовательно, в целом он реализует логическую операцию И-НЕ.

Если на всех входах элемента действует напряжение высокого уровня (лог.1), то на выходе первой части схемы (в точке А) образуется напряжение высокого уровня. Это напряжение через диоды VD пердаются на вход транзистора, который оказывается в режиме насыщения, на выходе элемента напряжение низкого уровня (лог.0).

рис. 2.7.

Если же хотя бы на одном из входов будут действовать напряжение низкого уровня (лог.0), то в точке А образуется напряжение низкого уровня (близкого к нулю), транзистор закрыт и на выходе элемента напряжение высокого уровня (лог.1). Работа диодного элемента И в интегральном исполнении отличается от работы рассмотренного выше такого же элемента на дискретных компонентах тем, что при одновременной подаче лог.1 на все входы - все диоды оказываются закрытыми. Благодаря этому уменьшается до весьма малого значения потребление тока от источника, подающего на вход напряжение лог.1.

Рассмотрим подробнее работу инверторной части элемента. Вначале отметим некоторые особенности транзисторов интегральных микросхем. В микросхемах используются кремниевые транзисторы типа n-p-n (при этом напряжение коллекторного питания имеет положительную полярность и транзистор открывается при положительном напряжении между базой и эммитером). На рис. 2.8 показана типичная зависимость тока коллектора от напряжения между базой и эммитером в активном режиме. Особенность этой характеристики в том, что практически транзистор начинает открываться при относительно высоких значениях базового напряжения (обычно превышающих 0,6 В). Эта особенность позволяет обходиться без источников базового смещения, так как и при положительных напряжениях на базе в десятые доли вольта транзистор оказывается практически закрытым. Наконец, еще одна особенность транзистора микросхем состоит в том, что напряжение между коллектором и эммитером в режиме насыщения сравнительно высоко (оно может быть 0,4 В и выше).

рис. 2.8.

Пусть сигналы на входы логического элемента подаются с выходов аналогичных элементов. Примем напряжение лог.1 равным 2,6 В, напряжение лог.0 равным 0,6 В, напряжения на открытых диодах и напряжение база - эмиттер насыщенного транзистора равными 0,8 В.

При подаче на все входы (см. рис. 2.7) напряжения 2,6 В (уровень лог.1) закрываются диоды на входах, ток от источника Е 1 через резистор R 1 , диоды VD проходит в базу транзистора, устанавливая транзистор в режим насыщения. На выходе элемента образуется напряжение низкого уровня 0,6 В (уровень лог.0). Напряжение U А равно сумме напряжений на диодах VD и напряжения U БЭ: 3·0,8 = 2,4 В. Таким образом, входные диоды оказываются под обратным напряжением 0,2 В.

Если хотя бы на один из входов подается напряжение низкого уровня 0,6 В (уровень лог.0), то ток от источника Е 1 замыкается через резистор R 1 , открытый входной диод и источник входного сигнала. При этом U А = 0,8 + 0,6 = 1,4 В. При таком напряжении транзистор оказывается закрытым благодаря смещению, обеспечиваемому диодами VD (эти диоды называются смещающими диодами ). Ток от источника Е 1 , протекая через резистор R 1 , диоды VD и резистор R 2 , создает на смещающих диодах падение напряжения, близкое к U А. Напряжение U БЭ положительно, но значительно меньше 0,6 В, и транзистор закрыт.

Элемент И-НЕ диодно-транзисторной логики (ДТЛ)

Основная схема элемента, приведенная на рис.2.9, как и рассмотренная выше схема элемента ДТЛ, состоит из двух последовательно включенных функциональных частей: схемы, выполняющей операцию И, и схемы инвертора. Отличительная особенность построения схемы И в элементе ТТЛ состоит в том, что в ней использован один многоэмиттерный транзистор МТ, заменяющий группу входных диодов схемы ДТЛ. Эмиттерные переходы МТ выполняют роль входных диодов, а коллекторный переход - роль смещающего диода в цепи базы транзистора инвертирующей части схемы элемента.

При рассмотрении принципа работы МТ его можно представить сотоящим из отдельных тарнзисторов с объединеными базами и коллекторами, как показано на рис.2.9,б.


рис. 2.9

Пусть на все входы элемента подано напряжение уровня лог.1 (3,2 В). Возможное при этом распределение потенциалов в отдельных точках схемы приведено на рис.2.10,а. Эмиттерные переходы МТ оказываются смещенными в обратном направлении (потенциалы эмиттеров выше потенциалов базы), коллекторный переход МТ, наоборот, смещен в прямом направлении (потенциал коллектора ниже потенциала базы). Таким образом, МТ можно представить транзисторами, работающими в активном режиме с инверсным включением (в таком включении эмиттер и коллектор меняются ролями). Многоэмиттерный транзистор выполняется таким образом, чтобы его коэффициент усиления в инверсном включении был много меньше единицы. Поэтому эмитторы отбирают от источников входных сигналов малый ток (в отличии от элементов ДТЛ, где этот ток через закрытые входные диоды практически равен нулю). Базовый ток МТ через коллекторный переход втекает в базу транзистора VT, удерживая последний в режиме насыщения. На выходе устанавливается напряжение низкого уровня (лог.0).


рис. 2.10.

Рассмотрим другое сотояние схемы. Пусть хотя бы на одном из входов действует напряжение уровня лог.0. Возникающее при этом распределение потенциалов показано на рис.2.10,б. Потенциал базы МТ выше потенциала эмиттера и коллектора. Следовательно, оба перехода, эмиттерный и коллекторный, смещены в прямом направлении и МТ находится в режиме насыщения. Весь базовый ток МТ замыкается через эмиттерные переходы. Напряжение между эмиттером и коллектором близко к нулю, и действующий на эмиттере низкий уровень напряжения через МТ передается на базу транзистора VT. Транзистор VT закрыт, на выходе высокий уровень напряжения (уровень лог.1). При этом практически весь базовый ток МТ замыкается через смещенный в прямом направлении эмиттерный переход МТ.

Основные параметры интегральных логических элементов

Рассмотрим основные параметры и способы их улучшения.

Коэффициент объединения по входу определяет число входов элемента, предназначенных для подачи логических переменных. Элемент с большим коэффициентом объединения по входу имеет более широкие логические возможности.

Нагрузочная способность (или коэффициент разветвления по выходу ) определяет число входов аналогичных элементов, которое может быть подключено к выходу данного элемента. Чем выше нагрузочная способность элементов, тем меньше число элементов может потребоваться при построении цифрового устройства.

Для повышения нагрузочной способности в ДТЛ и ТТЛ применяют усложненную схему инвертирующей части. Схема элемента с одним из вариантов сложного инвертора приведена на рис.2.11.


рис. 2.11

Рисунок 2.11,а иллюстрирует режим включенного элемента. Если на всех входах действует напряжение уровня лог.1, весь текущий через резистр R1 ток подается в базу транзистора VT2. Транзистор VT2 открывается и переходит в режим насыщения. Эмиттерный ток транзистора VT2 втекает в базу транзистора VT5, удерживая этот транзистор в открытом состоянии. Транзисторы VT3 и VT4 закрываются, так как при эмиттерном переходе каждого из них действует напряжение 0,3В, недостаточное для открывания тарнзисторов.

На рис. 2.11,б показан режим выключенного элемента. Если хотя бы на одном из входов действует напряжение уровня лог.0, то ток резистора R1 полностью переключается во входную цепь. Транзисторы VT2 и VT5 закрываются, на выходе напряжение уровня лог.1. Транзисторы VT3, VT4 работают в двух последовательно включенных эмиттерных повторителях, на вход которых подается ток через резистор R2, а эмиттерный ток транзитсора VT4 питает нагрузку.

В выключенном состоянии элемента с простым инвертором ток в нагрузку подается от источника питания через коллекторный резистор Rк с большим сопротивлением (см. рис. 2.11,б). Этот резистор ограничивает максимальное значение тока в нагрузке (с ростом тока нагрузки увеличивается падение напряжения на Rк, уменьшается напряжение на выходе). В элементе со сложным инвертором в нагрузку подается эмиттерный ток транзистора VT4, работающего в схеме эмиттерного повторителя. Так как выходное сопротивление эмиттерного повторителя мало, то выходное напряжение равно слабее зависти от тока нагрузки и допустимы большие значения нагрузочного тока.

Быстродействие логических элементов является одним из важнейших параметров логических элементов, оно оценивается задержкой распространения сигнала от входа к выходу элемента.

На рис.2.12 приведена форма входного и выходного сигналов логического элемента (инвертора): t 1,0 3 - время задержки переключения выхода элемента из состояния 1 в сотояние 0; t 0,1 3 - задержка переключения из состояния 0 в состояние 1. Как видно из рисунка, время задержки измеряется на уровне, среднем между уровнями лог.0 и лог.1. Средняя задержка распространения сигнала t з ср = 0,5 (t 0,1 3 + t 1,0 3). Этот параметр используется пр расчете задаержкит распространения сигналов в сложных логических скхемах.

рис. 2.12

Рассмотрим факторы, влияющие на быстродействие логического элемента, и методы повышения быстродействия.

Для повышения скорости переключения транзисторов в элементе необходимо использовать более высокочастотные тарнзисторы и перключение транзисторов производить большими управляющими токами в цепи базы; существенное уменьшение времени задержки достигается благодаря использованию насыщенного режима работы транзитсоров (в этом случае исключается время, необходимое на рассасывание неосновных носителей в базе при выключении транзисторов).

рис. 2.13

Этот процесс можно ускорить следующими приемами:

· уменьшением R (и следовательно уменьшением постоянной времени ); однако при этом растут потребляемые от источника питания ток и мощность;

· использование в элементе малых перепадов напряжения;

· применение на выходе элемента эмиттерного повторителя, уменьшающего влияние емкости нагрузки.

Ниже при описании логических элементов эмиттерно-связаной логики показано использование этих методов для повышения бысеродействия элементов.

рис. 2.13

Помехоустойчивость определяется максимальным значением помехи, не вызывающей нарушения работы элемента.

Для количественной оценки помехоустойчивости воспользуемся так называемой передаточной характеристикой логического элемента (инвертора). На рисунке 2.14 приведена типичная форма этой характеристики.

рис. 2.14

Передаточная характеристика представляет собой зависимость выходного напряжения от входного. Для ее получения необходимо соединить все входы логического элемента и, изменяя напряжение на выходе, отмечать соответствующие значения напряжения на выходе.

При увеличении входного напряжения от нуля до порогового уровня лог.0 U 0 п напряжение на выходе уменьшается от уровня лог.1 U 1 min . Дальнейшее увеличение входного приводит к резкому снижению выходного. При больших значениях входного напряжения, превышающих пороговый уровень лог.1 U 0 max . Таким образом, при нормальной работе элемента в статическом (установившемся) режиме недопустимы входные напряжения U 0 п < u вх

Допустимыми считаются такие помехи, которые, наложившись на входное напряжение, не выведут его в область недопустимых значений U 0 п < u вх

Логический элемент эмиттерно-связанной логики

Типовая схема интегрального элемента эмиттерно-связанной логики приведена на рис. 2.15.


рис. 2.15.

Транзисторы VT 0 , VT 1 , VT 2 , VT 3 работают в схеме переключателя тока, транзисторы VT 4 , VT 5 - в выходных эмиттерных повторителях. На схеме показаны значения потенциалов в различных точках при подаче на вход напряжения уровня лог.1; в скобки заключены значения потенциалов тех же точек для случая, когда на все входы элемента подано напряжения уровня лог.0. Значения этих потенциалов соответствуют следующим уровням:

· напряжение источника питания E к = 5 В;

· уровень лог.1 U 1 = 4,3 В;

· уровень лог.1 U 0 = 3,5 В;

· напряжение между базой и эмиттером открытого транзистора U бэ = 0,7 В.

Рассмторим принцип работы интегрального логического элемента ЭСЛ (см. рис. 2.15).

Пусть на Вх 1 подается напряжение U 1 = 4,3 В. Транзистор VT 1 открыт; эмиттерный ток этого транзистора создает на резисторе R падение напряжения U а = U 1 -U бэ = 4,3 - 0,7 = 3,6 В; коллекторный ток создает на резисторе R к1 напряжение U Rк1 = 0,8 В; напряжение на коллекторе транзистора U б = E к - U Rк1 = 5 - 0,8 = 4,2 В.

Напряжение между базой и эмиттером транзистора VT 0 U бэ VT0 = U - U а = 3,9 - 3,6 = 0,3 В; это напряжение недостаточно для открывания транзистора VT 0 . Таким образом, открытое состояние любого из транзисторов VT 1 , VT 2 , VT 3 приводит к закрытому состоянию транзистора VT 0 . Ток через резистор R к2 весьма мал (течет лишь базовый ток транзистора VT 5) и напряжение на коллекторе VT 0 .

Рассмотрим другое состояние логического элемента. Пусть на всех входах действует напряжение лог.0 U 0 = 3,5 В. При этом оказывается открытым транзистор VT 0 (из всех транзисторов, эмиттеры которых объеденины, открывается тот, на базе которого более высокое напряжение); U а = U - U бэ = 3,9 - 0,7 = 3,2 В; напряжение между базой и эмиттером транзисторов VT 1 , VT 2 , VT 3 равно U бэ VT1...VT0 = U 0 - U а = 3,5 - 0,7 = 0,3 В и эти транзисторы закрыты; U б = 5 В; U в = 4,2 В.

Напряжения от точек б и в передаются на выходы элемента через эмиттерные повоторители; при этом уровень напряжения снижается на значение U бэ = 0,7 В. Обратим внимание на то важное обстоятельство, что напряжения на выходах равны U 1 (4,3 В), либо U 0 (3,5 В).

Выясним, какая логическая функция формируется на выходах элемента.

В точке в и на Вых 2 образуется напряжение низкого уровня при открытом транзисторе VT 0 , т.е. в случае, когда х 1 = 0, х 2 = 0, х 3 = 0. При любой другой комбинации значений входных переменных транзистр VT 0 закрыт и на Вых 2 образуется напряжение высокого уровня. Из этого следует, что на Вых 2 формируется дизъюнкция переменных х 1 Vх 1 Vх 1 . На Вых 1 формируется функция ИЛИ-НЕ .

Следовательно, логический элемент выполняет операции ИЛИ-НЕ и ИЛИ.

В мткросхемах ЭСЛ точку г делают общей, а точку д подключают к источнику питания с напряжением -5В. В этом случае потенциалы всех точек схемы снижаются до 5 В.

Расмотренный логический элемент относится к классу наиболее быстродействующих элементов (малое время задержки распространения сигнала) обеспечивается следующими факторами: открытые транзисторы находятся в активном режиме (не в режиме насыщения); применение на выходах эмиттерных повторителей обеспечивает ускорение процесса перезаряда емкостей, подключенных к выходам; транзисторы включены по схеме включения с общей базой, что улучшает частотные свойства транзисторов и ускоряет процесс их переключения; выбран малым перепад логических уровней U 1 -U 0 = 0,8 В (однако это приводит к сравнительно низкой помехоустойчивости элемента).

Логические элементы на МДП-транзисторах

рис. 2.16

На рис. 2.16 показана схема логического элемента с индуцированным каналом типа n (так называемая n МДП - технология). Основные транзисторы VT 1 и VT 2 включены последовательно, транзистор VT 3 выполняет роль нагрузки. В случае, когда на обоих входах элемента действует высокое напряжение U 1 (х 1 =1, х 2 =1), оба транзистора VT 1 и VT 2 оказываются открытыми и на выходе устанавливается низкое напряжение U 0 . Во всех остальных случаях хотя бы один из транзисторов VT 1 или VT 2 закрыт и на выходе устанавливается напряжение U 1 . Таким образом, элемент выполняет логическую функцию И-НЕ.

рис. 2.17

На рис. 2.17 приведена схема элемента ИЛИ-НЕ. На его выходе устанавливается низкое напряжение U 0 , если хотя бы на одном из входов действует высокое напряжение U 1 , открывающее один из основных транзисторов VT 1 и VT 2 .

рис. 2.18

Приведенная на рис. 2.18 схема представляет собой схему элемента ИЛИ-НЕ КМДП-технологии. В ней транзисторы VT 1 и VT 2 - основные, транзисторы VT 3 и VT 4 - нагрузочные. Пусть высокое напряжение U 1 . При этом транзистор VT 2 открыт, транзистор VT 4 закрыт и независимо от уровня напряжения на другом входе и состояния остальных транзисторов на выходе устанавливается низкое напряжение U 0 . Элемент реализует логическую операцию ИЛИ-НЕ.

КМПД-схема характеризуется весьма малым потребляемым током (а следовательно, и мощности) от источников питания.

Логические элементы интегральной инжекционной логики

рис. 2.19

На рис. 2.19 показана топология логического элемента интегральной инжекционной логики (И 2 Л). Для создания такой структуры требуются две фазы диффузии в кремнии с проводимостью n-типа: в процессе первой фазы образуются области p 1 и p 2 , второй фазы - области n 2 .

Элемент имеет структуру p 1 -n 1 -p 2 -n 1 . Такую четырехслойную структуру удобно рассматривать, представив ее соединением двух обычных трехслойных транзисторных структур:

p 1 - n 1 - p 2 n 1 - p 2 - n 1

Соответствующая такому представлению схема показана на рис.2.20,а. Рассмотрим работу элемента по это схеме.

рис. 2.20

Транзистор VT 2 со структурой типа n 1 -p 2 -n 1 выполняет функции инвертора, имеющего несколько выходов (каждый коллектор образует отдельный выход элемента по схеме с открытым коллектором).

Транзистор VT 2 , называемый инжектором , имеет структуру типа p 1 -n 1 -p 2 . Так как область n 1 у этих транзисторов общая, эмиттер транзистора VT 2 должен быть соединен с базой транзистора VT 1 ; наличие общей области p 2 приводит к необходимости соединения базы транзистора VT 2 с коллектором транзистора VT 1 . Так образуется соединение транзисторов VT 1 и VT 2 , показанное на рис.2.20,а.

Так как на эмиттере транзистора VT 1 действует положительный потенциал, а база находится под нулевым потенциалом, эмиттерный переход оказывается смещенным в прямом направлении и транзистор открыт.

Коллекторный ток этого транзистора может замкнуться либо через транзистор VT 3 (инвертор предыдущего элемента), либо через эмиттерный переход транзистора VT 2 .

Если предыдущий логический элемент находится в открытом состоянии (открыт транзистор VT 3), то на входе данного элемента низкий уровень напряжения, который действуя на базе VT 2 , удерживает этот транзистор в закрытом состоянии. Ток инжектора VT 1 замыкается через транзистор VT 3. При закрытом состоянии предыдущего логического элемента (закрыт транзисторVT 3) коллекторный ток инжектора VT 1 втекает в базу транзистора VT 2 , и этот транзистор устанавливается в открытое состояние.

Таким образом, при закрытом VT 3 транзистор VT 2 открыт и, наоборот, при открытом VT 3 транзистор VT 2 закрыт. Открытое состояние элемента соответствует состоянию лог.0, закрытое - сотсоянию лог.1.

Инжектор явялется источником постоянного тока (который может быть общим для группы элементов). Часто пользуются условным графическим обозначением элемента, представленным на рис. 2.21,б.

На рис. 2.21,а показана схема, реализующая операцию ИЛИ-НЕ. Соединение коллекторов элементов соответствует выполнению операции так называемого монтажного И . Действительно, достаточно, чтобы хотя бы один из элементов находился в открытом состоянии (состоянии лог.0), тогда ток инжектора следующего элемента будет замыкаться через открытый инвертор и на на объединенном выходе элементов установится низкий уровень лог.0. Следовательно, на этом выходе формируется величина, соответствующая логическому выражению х 1 ·х 2 . Применение к нему преобразования де Моргана приводит к выражению х 1 ·х 2 = . Следовательно, данное соединение элементов действительно реализует операцию ИЛИ-НЕ.


рис. 2.21

Логические элементы И 2 Л имеют следующие достоинства:

· обеспечивают высокую степень интеграции; при изготовлении схем И 2 Л используются те же технологические процессы, что и при производстве интегральных схем на биполярных транзисторах, но оказывается меньшим число технологических операций и необходимых фотошаблонов;

· используется пониженное напряжение (около 1В);

· обеспечивают возможность обмена в широких пределах мощности на быстродействие (можно изменять на несколько порядков потребляемую мощность, что соответственно приведет к изменению быстродействия);

· хорошо согласуются с элементами ТТЛ.

На рис. 2.21,б показана схема перехода от элементов И 2 Л к элементу ТТЛ.

Для выполнения логических операций и решать логические задачи с помощью средств электроники были изобретены логические элементы. Их создают с помощью диодов, транзисторов и комбинированных элементов (диодно-транзисторные). Такая логика получила название диодной логики (ДЛ), транзисторной (ТЛ) и диодно–транзисторной (ДТЛ). Используют как полевые, так и биполярные транзисторы. В последнем случае предпочтение отдается устройствам типа n-p-n, так как они обладают большим быстродействием.

Логический элемент «ИЛИ»

Схема логического элемента «ИЛИ» представлена на рисунке 1 а. На каждый из входов может подаваться сигнал в виде какого-то напряжения (единица) или его отсутствия (ноль). На резисторе R появиться напряжение даже при его появлении на каком – либо из диодов.

Элементы или могут иметь несколько логических входов. Если используются не все входы, то те входы которые не используются следует соединять с землей (заземлять), чтобы избежать появления посторонних сигналов.

На рисунке 1б показано обозначение на электрической схеме элемента, а на 1в таблица истинности.

Логический элемент «И»

Схема элемента приведена на рис. 2. Если хотя – бы к одному из входов будет сигнал равный нулю, то через диод будет протекать ток. Падение напряжения на диоде стремится к нулю, соответственно на выходе тоже будет ноль. На выходе сможет появится сигнал только при условии, что все диоды будут закрыты, то есть на всех входах будет сигнал. Рассчитаем уровень сигнала на выходе устройства:


на рис. 2 б – обозначение на схеме, в – таблица истинности.

Логический элемент «НЕ»

В логическом элементе «НЕ» используют транзистор (рис.3 а). при наличии положительного напряжения на входе х=1 транзистор открывается и напряжение его коллектора стремится к нулю. Если х=0 то положительного сигнала на базе нет, транзистор закрыт, ток не проходит через коллектор и на резисторе R нет падения напряжения, соответственно на коллекторе появится сигнал Е. условное обозначение и таблица истинности приведены на рис. 3 б,в.


Логический элемент «ИЛИ-НЕ»

При создании различных схем на логических элементах часто применяют элементы комбинированные. В таких элементах совмещены несколько функций. Принципиальная схема показана на рис. 4 а.


Здесь диоды Д1 и Д2 выполняют роль элемента «ИЛИ», а транзистор играет роль инвертора. Обозначение элемента на схеме и его таблица истинности рис. 4б и в соответственно.

Логический элемент «И-НЕ»

Показана схема на рис. 5 а. Здесь диод Д3 выполняет роль так сказать фильтра во избежание искажения сигнала. Если на вход х1 или х2 не подан сигнал (х1=0 или х2=0), то через диод Д1 или Д2 будет протекать ток. Падение на нем не равно нулю и может оказаться достаточным для открытия транзистора. Последствием чего может стать ложное срабатывание и на выходе вместо единицы мы получим ноль. А если в цепь включить Д3, то на нем упадет значительная часть напряжения открытого на входе диода, и на базу транзистора практически ничего не приходит. Поэтому он будет закрыт, а на выходе будет единица, что и требуется при наличии нуля на каком либо из входов. На рис. 5б и в показаны таблица истинности и схемное обозначение данного устройства.


Логические элементы получили широчайшее применение в электронике и микропроцессорной технике. Многие системы управления строятся с использованием именно этих устройств.

ЛОГИЧЕСКИЕ СХЕМЫ

ЛОГИЧЕСКИЕ СХЕМЫ

Физ. устройства, реализующие функции матем. логики. Л. с. подразделяют на 2 класса: комбинационные схемы (Л. с. без памяти) и послед овател ьностные схемы (Л. с. с памятью). Л. с. являются основой любых систем (различных назначений и физ. природы) обработки дискретной информации. Л. с. может быть представлена в виде многополюсника (рис. 1), на к-рый поступает п входных сигналов и с к-рого снимается т выходных сигналов. При этом как независимые (логические) переменные Х 1 ,......, Х n , так и ф-ции Y 1 ,..., Y n , также наз. логическими, могут принимать к.-л. значения только из одного и того же конечного множества значений.

Наиб. распространены т. н. двоичные Л. с., для к-рых всё сигналов ограничено двумя значениями, отмечаемыми символами 1 и 0 и подчиняющимися условию: a =1, если и а =0, если Для представления чисел с помощью двоичных переменных 0 и 1 чаще всего применяют т. н. позиционный двоичный код, в к-ром разряды двоичного числа расставлены по степеням числа 2:

Напр., двоичное число 1101 2 =1*8+1*4+0*2+1*1 = 13. Поэтому при описании работы Л. с. необходимо различать, выступает данный в качестве числа или в качестве логич. переменной.

Для описания работы Л. с. используют табличный или аналитич. способы. В первом случае строят т. н. таблицу истинности, в к-рой приводятся все возможные сочетания входных сигналов (аргументов) и соответствующие им значения выходных сигналов (логич. ф-ций). В двоичной логике число разл. сочетаний из п аргументов равно 2 n , а число логических ф-ций Логич. ф-ции одного и двух независимых аргументбв, т. н. элементарные логич. ф-ции, приведены в табл. 1.

Функции (операции)

Аргументы:

Выражение через 3 осн. операции

Название

логич. ф-ций

X 1 0 0 1 1 Х 2 0 1 0 1



константа нуль



конъюнкция (операция И)



запрет по Х 2



тождественность X 1



запрет по X 1



тождественность X 2



сумма по модулю два



дизъюнкция (операция ИЛИ)



стрелка Пирса (операция ИЛИ -НЕ)



равнозначность



отрицание Х 2 (операция НЕ)



импликация от X 2 к X 1



отрицание Х 1 (операция НЕ)



импликация от X 1 к X 2



штрих Шеффера (операция И - НЕ)



константа единица

Для всех ф-ций приведены таблицы истинности (столбец 2). При аналитич. описании работы Л. с. используют спец. символы, обозначающие нек-рые логич. операции (столбец 1). Так, черта над переменной обозначает логич. операцию НЕ (логич. отрицание или инверсия), символ - логич. операцию ИЛИ (логич. сложение или дизъюнкция), символ умножения (точка) - логич. операцию И (логич. умножение или конъюнкция). Три перечисленные ф-ции часто наз. основными, т. к. они в совокупности составляют функционально полную систему, с помощью к-рой можно выразить любую другую логич. ф-цию, как это показано в столбце 3 таблицы. Вообще же функциональной полнотой обладают мн. системы ф-ций, в частности каждая из ф-ций И-НЕ или ИЛИ-НЕ .

В табл. 1 приведены все ф-ции одного и двух аргументов; нек-рые из этих ф-ций могут быть распространены и на те случаи, когда число переменных больше двух. Напр., справедливы равенства

Логические . Л. с., выполняющая одну из элементарных логич. операций, наз. логич. элементом (ЛЭ). ЛЭ имеет один или неск. входов, на к-рые поступают сигналы X i , и один выход. При этом выходной сигнал Y элемента не должен оказывать обратного воздействия на входной сигнал (однонаправленность ЛЭ). ЛЭ изображают прямоугольником, в верхней части к-рого обозначают символ операции. Входы показывают с левой стороны прямоугольника, выходы с правой. Операцию инверсии отмечают кружком у соответствующего выхода (рис. 2). Л. с. любой сложности можно построить из любого функционально полного набора ЛЭ путём соединения выходов одних элементов со входами других. Напр., для осуществления логич. операции

Суммирование по модулю два (строка У 6 в табл. 1) можно собрать схему, состоящую из 5 элементов, выполняющих операции НЕ, ИЛИ и И (рис. 3). К ЛЭ предъявляется комплекс требований, нередко имеющих взаимоисключающий характер, напр. большое быстродействие и малое энергопотребление, высокая надёжность и низкая себестоимость, небольшие габариты и и высокая технологичность произ-ва. Из всех возможных разновидностей ЛЭ (электромеха-нич., пневматич., электронных, оптич. и т. п.) совокупности всех требований наилучшим образом удовлетворяют полупроводниковые элементы, т. н. логич. (цифровые) полупроводниковые интегр. микросхемы, ИМС (см. Цифровые устройства, ). Простейшим ЛЭ является инвертор, к-рый может быть реализован на однотранзисторном усилит. каскаде, работающем в режиме электронного ключа (рис. 4, а). Если на вход этого усилителя подать достаточно высокое положит. (логич. сигнал 1), то откроется и напряжение на его выходе упадёт (логич. сигнал 0). И наоборот, при низком уровне входного сигнала транзистор будет заперт и напряжение на его выходе будет максимальным (логич. сигнал 1). Простейший элемент типа И-НЕ (рис. 4, б )получится при добавлении к инвертору на транзисторе входной логич. схемы И на многоэмиттерном транзисторе Т 1 . (см. Транзистор биполярный). Если на все входы транзистора Т 1 . поданы сигналы высокого уровня, то соответствующие базовые переходы Т 1 . будут закрыты. Тогда , протекающий через резистор R 1 и два последовательно включённых перехода транзисторов Т 1 . (база - коллектор) и Т 2 (база-эмиттер), открывает выходный транзистор Т 2 . Если же на один или несколько входов X i подано низкое напряжение (логич. 0), то открываются соответствующие переходы эмиттер-база транзистора Т 1 . При этом практически весь ток, текущий через R 1 пойдёт через открытый эмиттерный переход, т. к. его сопротивление значительно меньше сопротивления двух последовательно включённых переходов, и транзистор Т 2 окажется запертым. Широкое применение находят и др. типы ИМС. Это вызвано тем, что схемные и технологич. особенности определяют, как минимум, 2 самых важных параметра логич. микросхем: быстродействие и потребляемую (для совр. ЛЭ в интегр. исполнении переключения из одного в др., т, е. быстродействие ЛЭ, составляет от 50 до 0,2 нc при потребляемой мощности от 0,001 до 40 мВт). Эти параметры противоречивы, и в рамках одной технологии при улучшении одного неизбежно ухудшается другой, в связи с чем общее число типов ИМС, имеющих разл. сочетание осн. параметров и выполненных по разным технологиям, непрерывно расширяется.

Из ЛЭ разл. типа собирают более сложные функционально законченные устройства (операц. элементы, ОЭ), выполняющие определённые (не элементарные) логич. операции над входными сигналами и строящиеся по комбинационной и последовательностной схемам.

Комбинационные схемы - Л. с. без запоминания переменных - схемы, в к-рых в любой момент времени значения выходных сигналов однозначно определяются значениями входных сигналов X i . Наиб. распространёнными типами комбинац. схем являются ЛЭ (простейшие комбинац. схемы) и ОЭ . типов: кодов (шифраторы и дешифраторы), коммутаторы (мультиплексоры и демультиплексоры), ариметич. устройства (компараторы, сумматоры и пр.).

Шифратор (кодировщик) - ОЭ, преобразующий единичный сигнал на одном из п входов в m -разрядный выходной код. Напр., на пульте ввода информации имеется 10 клавиш с номерами i=0, 1, ..., 9. При нажатии i -й клавиши на вход шифратора подаётся единичный сигнал X i . На выходе шифратора должны появиться сигналы, отображающие двоичный код (Y 3 , . . ., Y 0) входного сигнала X/. Как видно из таблицы истинности шифратора (табл. 2), в этом случае нужна комбинац. схема с десятью входами и четырьмя выходами. На выходе Y 0 единица появляется при нажатии любой нечётной клавиши, т. е. Y 0 = Для остальных выходов логич. ф-ции имеют вид

Следовательно, для реализации шифратора необходимы четыре элемента ИЛИ: пятивходовый, два четырёхвходовых и двухвходовый. Схема шифратора и его условно-графич. обозначение показаны на рис. 5, а, б.

Дешифратор (декодировщик) - ОЭ, преобразующий n -разрядный входной код в сигнал только на одном из своих m выходов. Дешифратор двоичного n -разрядного кода имеет 2 n выходов. Таблицу истинности дешифратора, переводящего двоичный код в десятичное число (код "1 из 10"), можно получить из табл. 2, взаимно поменяв в ней местами входные и выходные переменные. По таблице истинности составляются логич. ф-ции и схема дешифратора. условно-графич. обозначения дешифратора трёхразрядного двоичного кода в код "1 из 8" см. на рис. 6.

Мультиплексор - ОЭ, осуществляющий адресное переключение заданного числа входных сигналов на один выход. Мультиплексор имеет два вида входов: информационные (Х 0 , ..., Х n ) и адресные (А 0 , ..., А m ). Выбор информац. линия производится кодом, поступающим на адресные входы. Поэтому на выход устройства передаются сигналы с того информац. входа X i , номер к-рого соответствует двоичному коду на адресных входах А т, ...., А 0 . Схему и условно-графич. обозначение мультиплексора на четыре входа см. на рис. 7. Из схемы следует, что

Для увеличения числа информац. входов необходимо увеличивать число адресных входов, т. к. п=2 т.


Демультиплексор - ОЭ, осуществляющий адресное подключение одного входного сигнала X к одному из множества выходов Y 0 , . . ., Y n . Сигнал X, поступающий на информац. вход, передаётся на тот выход Y i , номер к-рого задан адресными сигналами А m , . . ., А 0 . Логика выбора адреса в демультиплексоре такая же, как и в мультиплексоре. Схему и условно-графич. обозначение демультиплексора на 4 выхода см. на рис. 8.

Компаратор - ОЭ, производящий сравнение двух чисел А и В. Результат сравнения отображается единичным логич. уровнем на одном из трёх выходов компаратора Y A=B , Y Y Таблица истинности одноразрядного компаратора весьма проста (табл. 3). По ней легко составить логич. ф-ции

и схему данного устройства (рис. 9).

Сумматор - ОЭ, выполняющий операцию сложения неск. чисел. Двоичный сумматор является достаточно универсальным элементом и используется также при выполнении операций вычитания, умножения и деления. При сложении двух многоразрядных двоичных чисел в каждом i -м разряде находится сумма трёх чисел по модулю два (А i , В i ) и , поступившего из младшего разряда - P i- 1 ), и формируется сигнал переноса в старший разряд - Р i . По таблице истинности одноразрядного сумматора (табл. 4) составляют логич. ф-ции для выходных величин:

По этим ф-циям строят схему сумматора (рис. 10) на двух элементах СУММА ПО МОДУЛЮ 2, трёх элементах И и одном элементе ИЛИ. Для сложения многоразрядных чисел используют многоразрядные сумматоры, к-рые в простейшем случае получают последоват. соединением одноразрядных сумматоров (рис. 11).

Таб л. 2

Входы (десятичное число X i )

Выходы (двоичный

Выходы

Выходы

слагаемые

перенос

перенос

А i

в i

P i -l

Р i

Рассмотренный способ реализации разл. комбинац. схем на основе ЛЭ не является единственно возможным.

Для этих же целей можно использовать и постоянные запоминающие устройства (ПЗУ), в к-рых записаны необходимые таблицы истинности. При этом роль адреса, выбираемого из ПЗУ слова, будут играть входные сигналы (аргументы), а роль реализуемой логич. ф-ции - слово, записанное в ПЗУ по этому адресу.

Последовательностные схемы - Л. с. с запоминанием переменных - схемы, выходные сигналы к-рых зависят не только от значения входных сигналов в данный момент времени, но и от последовательности значений входных сигналов в предшествующие времени. Последовательностные схемы собираются из комбинационных путём введения в них обратных связей. Простейшим последовательностным устройством является RS-триггер, наз. также базовым элементом последовательностной логики. Базовые элементы лежат в основе всех остальных устройств последовательностной логики: многофункциональных триггеров разл. типа, регистров, счётчиков, многих видов запоминающих устройств.

Работу последовательностных схем обычно рассматривают в дискретном времени, состоящем из отд. интервалов - тактов. Длительность отд. тактов несущественна, при этом они могут быть как равными, так и различными. Изменение выходных сигналов последо-вательностного устройства может происходить только в начале (или конце) нового такта. В обозначения входных и выходных сигналов помимо их номера может включаться и обозначение номера такта; так и означают выходной сигнал Y i в п- мтакте и в следующем, (n +1)-м, такте. Последовательностные схемы обычно описывают при помощи таблиц переключений или переключат. ф-ций, представляющих собой таблицы истинности и логич. ф-ции, составленные с учётом номера такта. При описании таких схем используют также и временные диаграммы.

Триггеры -Последовательностные элементы с двумя устойчивыми выходными состояниями (0 или 1). Под действием входных сигналов способен переключаться в др. состояние с противоположным выходным сигналом. Осн. назначение - запоминание двоичной информации, заключающееся в сохранении триггером заданного состояния после прекращения действия переключающего сигнала. Простейший RS-триггер представляет собой устройство из двух ЛЭ D1 и D2 типа ИЛИ-НЕ (или И-НЕ), охваченных перекрёстной положительной обратной связью (рис. 12). Он имеет два свободных (управляющих) входа, обычно обозначаемых буквами R (от англ. reset - возврат) и S (англ. set - установка), и два выхода: прямой (Q) и инверсный Состояние триггера определяется по сигналам на его прямом выходе, т. е. считают, что находится в единичном состоянии, если 0 = 1 и и в нулевом состоянии, если Q=0 и Как видно из схемы рис. 12, состояние триггера может быть определено из логич. ф-ций элементов ИЛИ-НЕ: Q (для D 1) и = (для D2 ). Анализ состояния триггера в каждом из п тактов необходимо начинать с того элемента (D 1или D 2), на управляющем входе к-рого появилась 1. В этом случае, независимо от сигнала на 2-м входе этого элемента - выходного сигнала др. элемента в конце предыдущего, ( п- 1)-го такта,- на его выходе возникнет 0. Сигнал логич. О по цепи обратной связи поступает на др. элемент и совместно со вторым управляющим сигналом определяет его выходное состояние. Всего возможны четыре комбинации управляющих сигналов:

R = l и S=0, тогда и т. е. происходит установка триггера в нулевое устойчивое состояние (Q "=0 и независимо от состояния триггера в предыдущем, ( п- 1)-м такте;

R=0 и S=1, тогда Q n =00=1, т. е. триггер устанавливается в единичное устойчивое состояние независимо от предыдущего состояния;

R = S=0, тогда и т. е. состояние триггера в n -м такте осталось таким же, как и в предыдущем, ( п- 1)-м, такте;

R=S = 1, тогда Q n = и т. е. оба выходных сигнала равны 0, что не позволяет однозначно определить состояние системы.

Комбинации управляющих сигналов определяют и соответствующие режимы работы триггера: режим записи 0 (режим возврата), режим записи единицы (режим установки), режим хранения информации Q n = Q n -1 и запрещённый (неоднозначный) режим Переход RS -триггера из одного режима в другой показан на рис. 13. Стрелками указана последовательность появления выходных сигналов триггера при подаче единичных сигналов на S- и R-входы в режимах записи О и 1, а пунктирными линиями - неопределённые (случайные) значения (или 0, или 1) хранимой информации после перехода триггера из запрещённого режима (7-й такт) в режим хранения (8-й. . .10-й такты).

Возможность перехода RS -триггера в случайное состояние при выходе из запрещённого режима работы является крупным его недостатком. Поэтому в последовательностных Л. с. используются, как правило, сложные триггеры, у к-рых нет запрещённых режимов работы. Любой тип сложного триггера состоит из базовой ячейки памяти RS -триггера) и устройства управления, к-рое представляет собой Л. с., преобразующую входную информацию в R- и S-сигналы.

Простейшую схему управления имеет статич. D -триггер (рис. 14, а). Его управляющее устройство - комбинац. схема, состоящая из инвертора и двух ЛЭ И. Сигналы, предназначенные для записи, поступают на вход D. На вход синхронизации С подаются тактовые импульсы (синхроимпульсы), определяющие момент записи. Как видно из рис. 14, a , S=D*C, a R = Следовательно, при С=0 независимо от значения D имеем S=R=0, т. е. RS -триггер находится в режиме хранения информации. При С=1 либо S-, либо R-сигнал равен 1 и триггер находится в режиме записи единицы (при D = l) или нуля (при D=0). Сигнал на выходе Q может измениться только в первой части каждого такта, пока на входе С имеется сигнал единичного уровня (рис. 14, б ). Во второй части такта (при С=0) триггер находится в режиме хранения информации, и поэтому выходной сигнал задерживается до окончания того такта, в к-ром он был записан. Так, единичный сигнал на входе D заканчивается задолго до конца 0-го и 3-го тактов, а на выходе триггера он задерживается до начала 1-го и 4-го тактов. Недостатком статич. D-триггера является сквозная передача информации с D-входа на выход во время действия синхроимпульса, в результате чего сигнал на выходе триггера может измениться неск. раз в пределах одного такта (напр., 2-й такт, рис. 14, б).


В динамич. D-триггере, свободном от недостатков статич. Д-триггера, запись информации производится только во время одного изперепадов напряжения (или из 0 в 1, или из 1 в 0) на входе С, и поэтому выходной сигнал может измениться только один раз в пределах такта . Условно-графич. обозначение одного из динамич. D -триггеров см. на рис. 15.

Соединив в динамич. D -триггере инверсный выход с информац. входом D (рис. 16, а), получают счётный T -триггер, к-рый имеет только один управляющий вход Т (рис. 16, б). Первоначально на выходе Q этого триггера - нулевой сигнал (рис. 16, в ), а на входе D==1. По фронту первого синхроимпульса единичное состояние с D-входа перепишется на выход Q и соответственно на выходе и входе D появится нуль. В след. такте на D-выход будет переписан нулевой сигнал с D-входа. Т. о., на выходе T -триггера будет меняться на противоположную по приходу каждого счётного синхроимпульса, а число выходных импульсов уменьшится в два раза по сравнению с числом входных импульсов.


Регистр - последовательностный ОЭ, предназначенный для хранения и (или) преобразования многоразрядных двоичных чисел. Регистр состоит из набора триггеров, число к-рых равно макс. разрядности хранимых чисел.

Простейший регистр - регистр с параллельным вводом информации. Схему и условно-графич. обозначение 4-разрядного регистра на D-триггерах см. на рис. 17.


Параллельный двоичный 4-разрядный код поступает на информац. входы D1, . . ., D4 всех триггеров и записывается в регистр по приходу синхроимпульса С. В промежутках между синхроимпульсами происходит подготовка новой входной информации, а её смена в регистре осуществляется по очередному синхроимпульсу. Такие регистры в основном используются в системах оперативной памяти (см. Памяти устройства). Схема регистра с последоват. вводом информации, выполненного на D-триггерах с динамич. управлением, и его временные диаграммы см. на рис. 18. По приходу синхроимпульса С в первый триггер записывается код (О или 1), находящийся в этот момент на его D-входе. Каждый следующий триггер по этому же синхроимпульсу переключается в состояние, в к-ром в этот момент находился предыдущий триггер. Это происходит потому, что выходное состояние триггера изменяется с нек-рой задержкой относительно фронта синхроимпульса, равной времени срабатывания триггера (рис. 18, б). Следовательно, при последоват. соединении триггеров каждый синхроимпульс сдвигает код числа в регистре на один разряд, и поэтому для записи n -разрядного кода требуется п синхроимпульсов. Напр., в регистр вводится двоичный 4-разрядный код 1011 (рис. 18, б). По 1-му синхроимпульсу в 1-й триггер записывается единица старшего разряда. По 2-му синхроимпульсу эта единица перепишется с выхода 1-го на выход 2-го триггера, а в 1-й триггер запишется нуль (следующий разряд кода). Таким же образом после прихода 4-го синхроимпульса в регистре окажется записанным число Q 4 -1. Q 3 -0, Q 2 -1. Q 1 -1. Дo прихода след. импульса последовательно введённый 4-разрядный код будет храниться в регистре в виде параллельного кода, к-рый можно считывать с выходов Q 4 , . . ., Q 1 .

Большое распространение получили универсальные регистры , способные записывать и считывать числа как в последовательном, так и в параллельном кодах. Поэтому их можно использовать для преобразования последоват. кода в параллельный и наоборот, выполнения нек-рых арифметич. и логич. операций. Благодаря своей многофункциональности регистры стали одними из наиболее распространённых ОЭ в системах автоматики и вычислит. техники.

Счётчик - последовательностный ОЭ, предназначенный для счёта импульсов, поступивших на его вход. Счётчик состоит из цепочки триггеров, число к-рых определяет его разрядность, а следовательно, и число разл. состояний счётчика, к-рое наз. коэф. (модулем) счёта - К. Если кол-во входных импульсов больше модуля счёта, то через каждые К импульсов счётчик возвращается в исходное состояние и цикл счёта начинается сначала.

Простейшим одноразрядным счётчиком с К=2 является одиночный T -триггер, меняющий своё состояние на противоположное под действием каждого входного импульса. Если за нач. состояние триггера принять Q=0, то по приходу 1-го импульса он перейдёт в новое состояние с Q = l, а при поступлении 2-го импульса снова вернётся в исходное состояние с Q=0 и счёт может начинаться сначала. Цепочка из т счётных триггеров образует последоват. m -разрядный двоичный счётчик. Результат счёта отображается на выходах всех триггеров Q m ,....,Q 1 в виде параллельного двоичного кода числа сосчитанных импульсов, к-рый может принимать значения от 0, . . ., О до 1, . . ., 1. Т. к. число разрядов равно т, а каждая переменная может принимать лишь два значения (0 или 1), то число возможных состояний К=2 m . Макс. число импульсов, при к-ром счётчик полностью заполняется единицами, равно (2 m -1), т. к. с приходом 2 m -го импульса счётчик опять переходит в нулевое состояние.


На рис. 19, а приведена схема 4-разрядного двоичного счётчика на T -триггерах, срабатывающих по заднему фронту при переходе из 1 в 0 входного сигнала. Условно-графич. обозначение счётчика и его временные диаграммы см. на рис. 19, б. Диаграммы начинаются с момента, когда счётчик заполнен, т. е. на всех его выходах находятся сигналы единичного уровня - 1111. Число импульсов, подсчитанных счётчиком к этому времени, 1111 2 =1*2 3 +1*2 2 +1*2 1 +1*2 0 =15, что соответствует последнему (2 4 -1) его состоянию. По заднему фронту следующего (16-го) импульса все триггеры последовательно переключаются (стрелки на диаграмме) и счётчик переходит в исходное (нулевое) состояние. С приходом каждого след. импульса параллельный двоичный код на выходе счётчика будет увеличиваться на единицу, пока снова не наступит переполнение счётчика.

Рассмотренный суммирующий счётчик можно преобразовать в вычитающий, у к-рого выходной код будет уменьшаться на единицу с приходом каждого счётного импульса. Для этого достаточно входы синхронизации 2-го и следующих триггеров подключить не к прямым, а к инверсным выходам предыдущих триггеров.

Наиб. часто используются счётчики с коэф. счёта, не равным 2 m . Напр., в электронных часах необходимы счётчики с модулем К= 6(десятки мин), K = 10 (единицы мин), К= 7(дни недели). Для построения счётчика с можно использовать цепочку из т триггеров, для к-рой выполняется условие Очевидно, такой счётчик имеет лишние устойчивые состояния (2 m - - К). Их исключают, вводя обратные связи в цепь сброса счётчика в нулевое состояние, в том такте работы, когда счётчик досчитывает до числа К. Напр., для счётчика с K =5 нужны три триггера, т. к. Счётчик должен иметь пять устойчивых состояний N =0, 1, 2, 3, 4. В том такте, когда он должен перейти в устойчивое состояние N =5, его необходимо установить в исходное нулевое состояние. В схему такого счётчика (рис. 20, а) помимо трёх триггеров включают логич. элемент И, на к-рый подают выходные сигналы счётчика, соответствующие первому запрещённому состоянию, т. е. числу 5. С выхода элемента И сигнал сброса поступает на входы установки триггеров в 0 (R-входы). Как видно из диаграммы (рис. 20, б), в самом начале 6-го состояния (число 5) на обоих входах элемента И появляются логич. 1, вызывающие появление сигнала R = l, сбрасывающего счётчик в исходное состояние. После сброса триггера в нуль исчезает и единичный R-сигнал в цепи обратной связи и счётчик снова готов к работе в новом цикле.

Счётчики могут выполнять ф-ции делителей частоты, т. е. устройств, формирующих из импульсной последовательности с частотой f вх, импульсную последовательность f вых на выходе последнего триггера с частотой

Помимо рассмотренных простейших типов счётчиков существует большое кол-во более совершенных, но и значительно более сложных конструкций, обладающих лучшими параметрами и дополнит. функциональными возможностями .

Осн. типы Л. с. являются базой для построения разнообразных цифровых устройств ( процессоров, памяти устройств и пр.), из к-рых состоят совр. и системы автоматич. управления объектами и процессами.

Лит.: 1) Савельев А. Я., Арифметические и логические основы цифровых автоматов, М., 1980; 2) Зельдин Е. А., Цифровые интегральные микросхемы в информационно-измерительной аппаратуре, Л., 1986; 3) 3алманзон Л. А., Беседы об автоматике и кибернетике, М., 1981; 4) Мальцева Л. А., Фромберг Э. М., Ямпольский В. С., Основы цифровой техники, М., 1986; 5) ГОСТ 2

логические схемы с низким уровнем - логические микросхемы — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы логические микросхемы EN low level logic … Справочник технического переводчика

логические схемы (устройства) управления - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN control logic … Справочник технического переводчика

логические схемы коммутации - коммутирующая логика — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы коммутирующая логика EN switching logic … Справочник технического переводчика

логические схемы на (магнитных) сердечниках - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN core logic … Справочник технического переводчика

логические схемы на переключателях тока - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN current mode logiccurrent sinking logiccurrent steering logic … Справочник технического переводчика

логические схемы на пороговых элементах - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN threshold logic … Справочник технического переводчика

логические схемы переключения при отказе - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN failover logic … Справочник технического переводчика

логические схемы с буферными усилительными элементами - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN buffered logic … Справочник технического переводчика

логические схемы с внутренней синхронизацией - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN self checking logic … Справочник технического переводчика, Логические схемы разработаны в соответствии с учебной программой курса`Экономическая безопасность хозяйствующих субъектов`. Пособие предназначено для оказания методической помощи слушателям в… ,