Компенсация реактивной мощности в квартире, быту и на производстве. Установки компенсации реактивной мощности Чего нужна компенсация реактивной мощности

Все виды конденсаторных установок для компенсации реактивной мощности необходимы для стабилизации работы электрических сетей и снижения возможных энергопотерь. В состав этого оборудования входят батареи статических конденсаторов (БСК). Каждая БСК состоит из параллельно-последовательно соединенных в форме звезды или треугольника косинусных конденсаторов. Батарея оснащена токоограничивающими реакторами, которые нужны для регулировки тока при включении. Для защиты используется головной выключатель или трансформатор напряжения.

Благодаря этому процессу, возможно существенно уменьшить нагрузку на:

  • провода;
  • коммутационное оборудование;
  • трансформаторы.

За счет уменьшения искажения формы сопротивления повышаются качество электроэнергии у конечного пользователя и срок службы всего оборудования. Но откуда берутся помехи в подаче тока, и возникает необходимость в компенсации?

Общие вопросы теории

Во всех крупных электрических сетях возникают два вида сопротивлений:

  1. активное – например, у ламп накаливания, электронагревателей;
  2. индуктивное – у электродвигателей, распределительных трансформаторов, сварочного оборудования, люминесцентных ламп.

Общая мощность формируется с учетом этих двух нагрузок. Подробнее эта зависимость показана на картинке ниже.

Когда напряжение становится отрицательным, а ток – положительным и наоборот, происходит смещение тока по фазе. В этот момент мощность поступает в обратном направлении в сторону генератора, хотя должна идти на нагрузку. При этом электрическая энергия колеблется от нагрузки к генератору и обратно, вместо того, чтобы переходить по сети. Мощность, которая возникает во время этого процесса, называется реактивной. Такая мощность генерирует магнитное поле, которое также дает дополнительную нагрузку на силовые поля.

Для того чтобы установить полную мощность сети, необходимо определить обе составляющие: и активную, и реактивную. Значение вычисляется, исходя из фактора, или коэффициента, мощности, которым является cosφ – косинус угла, возникающий между кривыми активной и реактивной составляющих.

Активная мощность используется для преобразования в тепловую, механическую и другие полезные виды энергии. Реактивная не подходит для использования в этих целях, но без нее невозможна работа трансформаторов, генераторов и другого оборудования, функционирование которого основано на свойствах электромагнитного поля. Организации, занимающиеся электроснабжением, ведут поставку только активной нагрузки, потому что поставки реактивного сопротивления:

  • увеличивают мощность оборудования за счет снижения пропускной способности;
  • повышают активные потери;
  • приводят к падению напряжения из-за присутствия реактивной составляющей.

Особенности установки компенсационного оборудования

Удобнее всего генерировать реактивную часть напрямую у потребителя, иначе пользователю придется платить за поставки электричества дважды. Первый раз – за поставку активной, а второй – реактивной части. Кроме того, при такой двойной поставке потребуется дополнительное оборудование. Для чтобы избежать такой ситуации, используются конденсаторные установки компенсации реактивной мощности.

Важно! Установка компенсации реактивной мощности (КРМ) не просто экономит энергию. На промышленных предприятиях России потенциал энергосбережения составляет только 13-15% от общего потребления.

Уровень потребляемой электроэнергии на предприятии постоянно изменяется, то есть cosφ может расти или понижаться. Таким образом, чем больше коэффициент мощности, тем выше активная составляющая и наоборот. Для регулирования данного процесса требуются конденсаторные установки, способные компенсировать реактивную составляющую.

Конденсаторы, на основе которых построена эта компенсационная аппаратура, удерживают значение напряжения на заданном уровне. Ток в конденсаторах в противоположность индуктивности работает на опережение. Таким образом, конденсаторы выступают в роли фазосдвигающего оборудования.

Все конденсаторные установки по компенсации реактивной мощности разделяются на регулируемые и нерегулируемые. Главный недостаток последних заключается в том, что при существенном изменении нагрузки и коэффициента мощности, возможна перекомпенсация. Если в цепи имеется вероятность существенного роста cosφ, использовать нерегулируемого КРМ не рекомендуется.

Регулируемые устройства способны работать в динамическом режиме, проводить мониторинг и отслеживать показания для дальнейшего анализа. Контроллер, входящий в состав этого оборудования, прямо на месте отслеживает и рассчитывает сразу несколько показателей:

  • уровень реактивной нагрузки во внешней цепи;
  • определяет существующий коэффициент мощности;
  • сравнивает коэффициент с заданными значениями.

Если полученное значение отличается от эталона, регулятор подключает или отключает определенные конденсаторы, входящие в компенсаторную установку. Использование этого оборудования дает возможность полностью контролировать уровень подачи электроэнергии на предприятиях с большим количеством разных по назначению приборов. Особенно это важно, если точно отследить, как изменяется реактивная составляющая по сети, довольно сложно. Общий принцип компенсирования позволяет не устанавливать у каждого прибора с реактивной составляющей отдельного оборудования.

Эффективность применения конденсаторных установок

Несмотря на то, что удобнее всего компенсировать реактивную составляющую напрямую у потребителя, для улучшения качества поставляемой электроэнергии первые установки используются еще на подстанциях. Это дает возможность разгрузить сеть и уже сэкономить от 10 до 20% энергии. Поэтому на подстанциях в 0,4 кВ проводится переключение пользователей с перегруженных фаз на недогруженные.

У непромышленных абонентов качественно выровнять фазы, используя только одну конденсаторную установку, практически невозможно. Особенно это касается жилых зданий с однофазной нагрузкой. Здесь компенсацию проводят на каждой фазе и дополнительно используют фильтры, емкость которых можно менять в автоматическом режиме.

Номинальное напряжение конденсаторных установок может быть самым разным. Высоковольтное оборудование 6, 10, 35кВ используют на подстанциях. Низковольтные устройства 0,4-0,66кВ применяют непосредственно на нагрузках. За счет высокого быстродействия низковольтные приборы могут стабилизировать не только постоянную, но и скачкообразную реактивную мощность.

В общем случае компенсация реактивной мощности состоит из 2 этапов:

  1. Централизованный мониторинг качества (грубая компенсация) путем выравнивания фаз и фильтрации тока на подстанциях;
  2. Индивидуальная компенсация на промышленных предприятиях, их отдельных подразделениях, а также на уровне мелких потребителей – владельцев квартир и частных домов. В ходе этих работ устройство компенсации реактивной мощности уменьшает энергопотери за счет обеспечения синусоидальности тока.

Раньше проблемы энергосбережения у небольших потребителей практически не брались во внимание. Считалось, что реактивная составляющая оказывает влияние только на работу крупных предприятий, где используются индукционные печи, асинхронные двигатели, понижающие трансформаторы и другие приборы.

Но в последнее время количество используемого преобразовательного и стабилизирующего оборудования в социально-бытовой среде значительно увеличилось. Полупроводниковые преобразователи ухудшают форму кривой тока, тем самым негативно влияют на функционирование других приборов. Но пока устройства КРМ для частных коммунально-бытовых потребителей почти не применяются.

Видео

Компенсация реактивной мощности на предприятии позволяет существенно сократить расход электроэнергии, снизить нагрузку на кабельные сети и трансформаторы, продлив тем самым их ресурс.

Где необходимы конденсаторные установки?

Как известно Основные потребители электроэнергии на промышленных предприятиях являются такие индуктивные приемники, как асинхронные электродвигатели, трансформаторы, индукционные установки и т. д. Работа этих приемников связана с потреблением реактивной энергии для создания электромагнитных полей.

Наличие реактивной мощности является неблагоприятным фактором для сети в целом
В результате этого:

  • Возникают дополнительные потери в проводниках вследствие увеличения тока
  • Снижается пропускная способность распределительной сети
  • Отклоняется напряжение сети от номинала (падение напряжения из-за увеличения реактивной составляющей тока питающей сети).

Показателем потребления реактивной мощности является коэффициент мощности (КМ), численно равный косинус угла (ɸ) между током и напряжением. КМ потребителя определяется как отношение потребляемой активной мощности к полной, действительно взятой из сети, т.е.: COS(ɸ)=Р/S. Этим коэффициентом принято характеризовать уровень реактивной мощности двигателей, генераторов и сети предприятия в целом. Чем ближе значение COS(ɸ) к единице, тем меньше доля взятой из сети реактивной мощности.

Таким образом, применение Конденсаторных установок остро необходимо на предприятиях, использующих:

  1. Асинхронные двигатели (cos(ɸ) ~0.7)
  2. Асинхронные двигатели, при неполной загрузке (cos(ɸ) ~0.5)
  3. Выпрямительные электролизные установки (cos(ɸ) ~0.6)
  4. Электродуговые печи(cos(ɸ) ~0.6)
  5. Индукционные печи(cos(ɸ) ~0,2-0.6)
  6. Водяные насосы(cos(ɸ) ~0.8)
  7. Компрессоры(cos(ɸ) ~0.7)
  8. Машины, станки(cos(ɸ) ~0.5)
  9. Сварочные трансформаторы(cos(ɸ) ~0.4)
  10. Лампы дневного света(cos(ɸ) ~0,5-0.6)

Для повышения коэффициента мощности применяют силовые конденсаторы и конденсаторные установки, являющиеся наиболее выгодными источниками получения реактивной мощности.

Плюсы от внедрения Установок компенсации реактивной мощности:

  1. Снижение потребления электроэнергии (от 10-20%, а при cos φ (0,5 и менее) потребность в электроэнергии может сократиться более чем на 30%)и как следствие уменьшение платежей (за счет «исключения» реактивной энергии из сети)
  2. Уменьшение нагрузки (до 30%) элементов распределительной сети (подводящих линий, трансформаторов и распределительных устройств), тем самым продлевается их срок службы
  3. Увеличение пропускной способности системы электроснабжения потребителя (от 30-40%), что позволит подключить дополнительные мощности без увеличения стоимости сетей.

Увеличение КМ решается подключением к сети конденсаторных батарей, производящих реактивную энергию в количестве, достаточном для компенсации реактивной мощности, возникающей в нагрузке.

Способы компенсации

Наиболее выгодный способ компенсации определяется конкретными условиями данного предприятия, и его выбор производится на основании технико-экономических расчетов и рекомендаций наших специалистов. Как правило, компенсация должна производиться в той же сети (на том же напряжении), к которой подключен потребитель, что обеспечивает минимальные потери.

Какие решения мы предлагаем

Наша Компания предлагает полный спектр услуг, А ИМЕННО:

  1. Проведение выездных замеров параметров качества электроэнергии.
  2. Подготовка проекта, подбор необходимого оборудования с экономическим обоснованием его внедрения (с конкретными сроками окупаемости установок и денежной экономии).
  3. Изготовления оборудования, как серийного исполнения, так и нестандартного (учитывающую специфику конкретного предприятия).
  4. Проведение шеф монтажных работ, а также гарантийное и после гарантийное обслуживание.
    Мы можем предложить как типовые решения, так и спроектировать, изготовить и внедрить на предприятии Заказчика уникальную систему компенсации реактивной мощности, учитывающую специфику конкретного предприятия.

В зависимости от потребности Заказчика установки могут изготавливаться как для внутренней, так и для уличной установки. Кроме этого возможен монтаж установок внутри утепленного блок-контейнера.

Для предприятий с резкопеременной нагрузкой (предприятия с большим количеством подъемно-транспортного оборудования, мощного сварочного оборудования и т.д.) мы предлагаем тиристорные конденсаторные установки, которые обеспечивают переключение ступеней конденсаторов с задержкой не более 20 мс.

Для выработки оптимального технического решения мы предлагаем выездные замеры параметров качества электроэнергии в сети предприятия. При необходимости наши инженеры выполнятшефмонтаж оборудования, а также любое гарантийное и послегарантийное обслуживание и ремонт.

В современном глобальном мире экономия энергоресурсов выходит на первое место по своей актуальности. Экономия энергии, в некоторых странах, активно поддерживается государством не только для крупных потребителей, но и для обычных обывателей. Что в свою очередь делает компенсатор реактивной мощности актуальным для домашнего применения.

Компенсация реактивной мощности:

Многие потребители, прочитав в интернете о компенсации реактивной мощности крупными заводами и фабриками тоже задумываются о компенсации реактивной составляющей у себя дома. Тем более что сейчас существует большой выбор компенсирующих устройств, применять которые можно в обыкновенном быту. О том, действительно ли существует возможность, несколько сэкономить на этом у вас дома, вы можете прочитать в этой статье . А мы рассмотрим, возможность сделать такой компенсатор своими руками.

Отвечу сразу – да, возможно. Более того, это не только дешевое, но и довольно простое устройство, однако для понимания принципа его работы нужно знать, что такое реактивная мощность .

С курса школьной физики, и азов электротехники многим из вас уже известно общие сведенья о реактивной мощности, поэтому следует перейти сразу к практической части, однако невозможно этого сделать, миновав нелюбимую всеми математику.

Итак, для начала выбора элементов компенсатора необходимо рассчитать реактивную мощность нагрузки:

Поскольку такие составляющие как напряжение и ток мы можем померять, то фазовый сдвиг мы можем замерять только с помощью осциллографа, а он есть не у всех, так что придется идти другим путем:

Поскольку мы используем самое примитивное устройство из самих конденсаторов, нам необходимо рассчитать их емкость:

Где f – частота сети, а Х С – реактивное сопротивление конденсатора, оно равно:

Конденсаторы подбираются по току, напряжению, емкости, мощности соответственно, отталкиваясь от ваших потребностей. Желательно чтобы количество конденсаторов было больше единицы, чтобы возможно было экспериментально подобрать наиболее подходящую емкость для нужного потребителя.

В целях безопасности компенсирующее устройство должно подключатся через плавкий предохранитель или автомат (на случай слишком большого зарядного тока или КЗ).

Поэтому рассчитаем ток плавкого предохранителя (плавкой вставки):

Где і в – ток плавкой вставки (предохранителя), А; n – количество конденсаторов в устройстве, штук; Q k – номинальная мощность однофазного конденсатора, кВАр; U л – линейное напряжение, кВ (в нашем случае фазное без).

Если используем автомат:

После отключения компенсатора от сети на его зажимах будет напряжение, поэтому для быстрого разряда конденсаторов можно использовать резистор (лучше всего лампочку накаливания или неонку), подключив его параллельно устройству. Блок-схема и принципиальная схемы приведены ниже:


Блок-схема включения компенсатора реактивной мощности
Продемонстрирую более наглядно

В отверстие номер один подключается потребитель, а в отверстие номер два подключается компенсатор.


Принципиальная схема компенсатора реактивной мощности
Включение через предохранитель-автомат

Включается компенсирующее устройство всегда параллельно нагрузке. Данная хитрость уменьшает результирующий ток цепи, что уменьшает нагрев кабеля, соответственно к одной розетке может быть подключено большое количество потребителей или увеличена их мощность.

1. ЦЕЛИ И ЗАДАЧИ ВЫПОЛНЕНИЯ РАБОТЫ

Цель работы

Анализ актуальности, общих принципов и технических средств компенсации реактивной мощности для повышения энергоэффективности электрических сетей городов, промышленных предприятий и объектов электроэнергетики

Задачи работы

1. Рассмотреть физические основы и понятие реактивной мощности

2. Изучить современные устройства компенсации реактивной мощности в низковольтных электрических сетях

3. Изучить процедуру и выполнить настройку регулятора реактивной мощности конденсаторной установки.

4. Провести регистрацию параметров электрической сети до и после компенсации реактивной мощности.

5. Выполнить расчет эффективности компенсации реактивной мощности.

6. Проанализировать эффективность компенсации реактивной мощности для снижения потерь мощности в электрической сети.

2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Понятие реактивной мощности

В электрических цепях переменного тока различают три вида мощности: активную, реактивную и полную.

Полная мощность S представляет собой произведение напряжения на полный ток в электрической цепи:

Эта мощность измеряется в вольтамперах (ВА).

мощ ность равна про зведени ю напряж ения, тока и косинуса угла φ между

напряжение

и током и измер ется в ваттах (Вт):

Реактивная мощность Q

напряжения, тока и

произведению

синуса угла φ межд напряжением и током и

измеряется в вольтамперах

реа ктивных

бусловлена тем,

риемников

нуждаются для своей работы в переменном электромагнитном поле.

Из этих выражений следует, что

Векторная диаграмма мощностей показана на рис.

Рис. 2. Диаграмма мощно тей

Присутствие реактивной составляющей мощности в электрической сети обусловлено конструктивными особенностями элементов электрических сетей и подстанций, а также электрических цепей электроприемников и связано с наличием в них реактивных сопротивлений (индуктивностей и емкостей). Данные реактивные сопротивления оказывают препятствие изменению параметров электрической энергии. Так, индуктивности препятствуют любому изменению тока в них, а емкости – изменению напряжения. Указанное препятствие выражается в том, что эти элементы в определенные интервалы времени «запасают» и «отдают» электрическую энергию. При выработке, преобразовании, передаче и потреблении электрической энергии на переменном напряжении данное обстоятельство приводит к колебательному процессу обмена энергией между реактивными элементами, рассредоточенными между элементами электрических станций, подстанций, линий электропередачи и электроприемниками.

Вышеуказанную долю электрической энергии называют реактивной энергией. При этом реактивная энергия не преобразуется в другие виды энергии, но её потоки по элементам электрических цепей сопровождаются дополнительной загрузкой этих элементов, а также дополнительными потерями активной энергии на их активных сопротивлениях.

Основным показателем потребления реактивной энергии (мощности) является коэффициент мощности сosφ. Он показывает соотношение активной мощности Р и полной мощности S , потребляемой электроприемниками из сети:

Актуальность компенсации реактивной мощности

Общеприняты понятия, что реактивности индуктивного характера являются потребителями реактивной энергии, а реактивности емкостного характера – источниками реактивной энергии. Установка источников реактивной мощности непосредственно у потребителей или в узлах электрической сети носит название компенсации реактивной мощности

Компенсация реактивной мощности – представляет собой один из наиболее важных и ответственных мероприятий по повышению энергоэффективности. В комплексе вопросов, посвященных передаче, распределению и потреблению электроэнергии, проблема КРМ всегда находилась на одном из наиболее важных мест.

При нормальных рабочих условиях все электрические потребители, режим которых сопровождается постоянным возникновением и исчезновением магнитных полей (например, индукционные двигатели, оборудование для сварки), забирают от сети не только активную, но и индуктивную реактивную мощность. Эта реактивная мощность необходима для работы оборудования и, в то же время, может быть рассмотрена как нежелательная дополнительная нагрузка сети. При передаче тока ненужная реактивная часть должна быть по возможности малой. С другой стороны, реактивную мощность использует потребитель, поэтому ее нужно пытаться передать не через сеть общего электроснабжения, а выработать непосредственно в месте ее потребления. Таким образом, обеспечивается:

снижение потерь электроэнергии и мощности в силовых трансформаторах и линиях электропередачи;

снижение загрузки силовых трансформаторов и линий электропередачи;

воз можность

подключения

дополнительных

потребителей

пределах заявленной мощности;

повышение

качества электрической энергии, нормализация уровня

напряжения.

В совр еменных

услови ях для компенсации реактивной мощности

низковольтных пром

шленных и городских электрическ их сетях наибольшее

рас пространение

получили отдельные

конденсаторы или

конденсаторные

уст новки

наиболее

экон мически

пра ктически

выгодных

показателей.

действия

конденсаторных

установок

заключается

сле дующем.

емкост ное

сопротивле ие

величине

индуктивном у, то действия

их токов взаимно

компенсируются. Таким

образом, потребляемая

реактивная

может быть снижена или

всего, реактивная мощн ость

полностью

компенсируется (до

так к к появляется рис к перекомпенсации

(из-за переменных величин

1 активной

мощности

нагрузки, а также иных

случайных

факторов).

В основном,

пытаются

значения

диапазоне 0,90...0,95.

Рис. 3. Баланс мощности

Процесс такого уравнивания количества энергии электрического поля (конденсатора) и магнитного поля (индуктивности) и является компенсацией реактивной мощности.

Вырабатывая реактивную мощность, конденсаторные батареи повышают величину напряжения в точке их установки, поэтому они применяются не только в целях уменьшения потерь электроэнергии, но и для регулирования напряжения у потребителей. Например, если потребитель находится на значительном удалении от узла питания, то за счет падения напряжения в линии потребителя напряжение у потребителя может снизиться ниже нормально допустимого для работы этого оборудования. Эффективным решением является установка у потребителя с пониженным напряжением конденсаторной батареи для повышения напряжения.

Отдельные конденсаторы для компенсации реактивной мощности выпускаются на напряжения 220, 380 и 660 В в трехфазном исполнении мощностью от 1 до 10 квар и на напряжения 1,05; 3,15; 6,3 и 10,5 кВ – в однофазном исполнении мощностью от 13 до 75 квар.

Так как мощность отдельных конденсаторов сравнительно невелика, то обычно их соединяют параллельно в батареи, размещаемые в комплектных шкафах.

В зависимости от способа исполнения различают нерегулируемые и регулируемые конденсаторные установки. Регулируемые установки всегда выполняются многоступенчатыми и оснащаются автоматическими микропроцессорными регуляторами для исключения перекомпенсации реактивной мощности в минимальном режиме и, как следствие, повышение напряжения у потребителей. Принципы регулирования могут быть различными: по времени суток, по величине реактивной мощности, по напряжению, по величине полного тока, коэффициенту мощности, а также комбинированные. Использование регулируемых установок является более эффективным способом реализации КРМ, однако, и более дорогостоящим.

В последнее время повсеместное внедрение силовой преобразовательной техники в промышленности, например, частотно регулируемых электроприводов, ставит перед потребителями проблему искажения кривой питающего напряжения высшими гармониками. В этом случае необходимо использовать конденсаторные установки, оснащенные дросселями. Дроссели предназначены для работы в составе конденсаторных установок, включаются последовательно с конденсаторами и служат для отстройки от частоты превалирующей в сети гармоники для предотвращения повреждения конденсаторной установки.

В зависимости от подключения и формы применения конденсаторных установок или отдельных конденсаторов различают несколько видов компенсации:

Централизованная компенсация (рис. 4, а, б), при которой определенное число конденсаторов подключается к распределительному устройству подстанции. Конденсаторы управляются электронным регулятором, который постоянно анализирует потребность реактивной мощности в сети. Такие регуляторы включают или отключают конденсаторы,

с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная потребность сети. Размещение конденсаторных установок в РУ 0,4 кВ окупается за 2,5-4,5 года.

Групповая компенсация (рис. 4, в), в которой аналогично локальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается совместный постоянный конденсатор (лежащие вблизи друг от друга электродвигатели, группы разрядных ламп). Здесь также разгружается подводящая линия, правда, только до распределителя на отдельные потребители. Срок окупаемости этого вида компенсации ориентировочно равен 1,5-4,5 года.

Индивидуальная или постоянная компенсация (рис. 4, г), при которой индуктивная реактивная мощность компенсируется непосредственно

в месте ее возникновения, что ведет к разгрузке подводящих проводов

(тип ично для отдельных, в продолжительном режиме работающих потребителей с постоянной или относительно большой мощнос ью (свыше 20 кВт) - асинхронные двигат ли, трансформаторы, сварочные инструменты, раз ядные л мпы и т. д.). Этот вид компенсации наиболее эффективен, а срок окупаемости по среднестатистическим данным составляет от 0,3 до 0,7 года.

отс тствие вращающ ихся частей;

простой монтаж и эксплуатация (не нуж но фундамента);

относительно не высокие капиталовложения;

блока нагрузки, блока управления нагрузкой, регулируемой конденсаторной уст новки.

Конде саторна

устано вка

редназначена

реа ктивной

электрическую

сет. Она представляет собой

металлический шкаф,

размещены

конденсаторы,

контакторы,

предохранители,

ру ильник,

микропроцессорный

регулятор

реактивной

регулятор).

Конденсаторная

установка состоит

конденсаторов, мощностью 2,5, 2,5 и

квар. В зависимости от комбинации

включенных

конденсаторов

установка

ступени регулирования

мощ ности: 2,5, 5, 7,5 и 10 квар.

Блок нагрузки (рис.

моделирует акти но-индуктивную нагрузку в

пределах от 0 до 10 к ВА с помощью комбинации дросселей и резисторов.

правления

нагрузкой (рис. 7) позволяет дискретно

акт ивно-индуктивную

нагруз ку. На панели у равления блока размещены

органы управления и элементы

сигнализации.

Рис. 5. Конденсаторная

Рис. 6. Бло нагрузки

Рис. 7. Блок управления

установка

нагрузкой

Для регулирования выдаваемой реактивной мощности конденсаторной

уст новки

в работе использу ется регулятор

CR05 производства фир мы

обеспечивает

управление реактивной

мощностью установки

зави симости от заданного пользователем cosφ.

рис. 8 изображен внешний вид

элементы управления

сиг нализации регулятора:

Рис. 8. Описание перед ей панелиуправлени я

1. in d – акти но-индуктивная нагрузка;

2. c ap – активно-емкостная нагрузка;

3. c osф / cos ф – текущий или средний c osφ;

4. a mp / volt – ток или напряжение;

5. al arm – включена сигнализа ция;

6. S TAGES – информируют о состоянии соответствующих конденсаторов (светится при включенном конденсаторе);

7. Кнопки для настройки и обслуживания регулятора.

Принцип работы регулятора основывается на следующем. Регулятор

этим значениям прибор вычи сляет реактивну ю мощность и коэффициент мощ ности нагрузки. Определ ние необходимого количества подключенных сту пеней производится путем сравнения текущ его значения коэффициен та

4. ПОРЯДОК ВЫПОЛНЕН Я РАБОТЫ

1. Настроить п раметры регулятора

1.1. Войти в меню настроек регуля ора. На жать кнопку SET и удерж вать в течение 5 с. На дис лее появится параметр CoS .

Экономия энергоносителей – одна из главных задач современной цивилизации. Все больше статей появляется в интернете об экономии электроэнергии методом компенсации Действительно, для промышленных предприятий данный процесс актуален, так как экономит денежные средства. Довольно много людей начинает задумываться, если промышленные предприятия экономят на реактивной составляющей, возможна ли экономия на этом в быту, путем компенсации реактивной составляющей в мастерской, на даче или в квартире.

Я наверное вас разочарую – это невозможно сделать, по нескольким причинам:

  1. , которые устанавливаются для частных потребителей, ведут учет только активной мощности;
  2. Учет за реактивной составляющей ведется только на больших промышленных предприятиях, для частных потребителей этот учет не ведется;
  3. Такая энергия не выполняет абсолютно никакой полезной работы, а только греет провода и другие устройства;

Да, в бытовых условиях возможна установка фильтров, это снизит суммарный ток в цепи, уменьшит падение напряжения. При пуске устройств большой мощности (пылесосы, холодильники) бытовые компенсаторы реактивной мощности снижают пусковой ток. Довольно просто собрать компенсатор реактивной мощности своими руками в домашних условиях. Для этого необходимо рассчитать реактивную мощность для однофазного устройства:

Для этого вам необходимо произвести замеры напряжения и тока цепи. Как найти cosφ? Очень просто:

Р – активная мощность устройства (указывается на самом устройстве)

f- частота сети.

Подбираем конденсаторы для бытового компенсатора реактивной мощности по емкости, напряжению, роду тока. Конденсаторы вешаются параллельно нагрузке.

Снижение суммарного тока снизит нагрев и позволит максимально использовать мощность цепи. Но, на промышленных предприятиях cosφ строго регламентирован, и контролируется в большинстве случаев автоматически, то есть при выводе какого-либо устройства с работы cosφ все равно поддерживается в заданном диапазоне. Представьте, что вы рассчитали в вашей квартире, сделали компенсатор и подключили в цепь. Но через некоторое время отключился потребитель (например, холодильник) и баланс сети нарушился. Теперь вы не компенсируете, а генерируете реактивную энергию обратно в сеть, тем самым негативно влияя на работу других потребителей. Для того чтобы сохранять баланс необходимо постоянно следить за работой различных устройств. В быту автоматизировать данный процесс слишком дорого и лишено смысла, так как это не позволит вам вернуть деньги даже за компенсатор.

Можно сделать вывод что компенсация реактивной мощности в быту бессмысленна, так как не позволит сэкономить средства, а установка нерегулируемого компенсатора может привести к перекомпенсации и как следствие только ухудшить коэфициент мощности сети cosφ.

Если вы хотите экономить электроэнергию следует пользоваться старыми надежными способами:

  1. Покупать бытовую технику класса А или В;
  2. Выключать свет и бытовые приборы (исключение холодильник) когда уходите из дома;
  3. Заменить лампы накаливания на энергосберегающие. Они и служат дольше и потребляют меньше;
  4. Если пользуетесь электрочайником – кипятите столько воды, сколько требуется, это существенно снизит потребляемую им энергию;
  5. Чистить фильтр пылесоса для улучшения тяги и снижения энергопотребления;
  6. Утепляйте помещения для минимального использования электрических обогревателей.

На видео показан бытовой компенсатор реактивной мощности своими руками

На видео используется бытовой компенсатор в виде блока конденсаторных батарей