Предел переменной величины. Предел последовательности

Переменные и постоянные величины – это не совсем просто

Школьная математика всегда убеждала и продолжает убеждать нас в том, что вопрос о переменных и постоянных величинах решается очень просто. Переменными считаются величины, которые в условиях данной задачи могут принимать различные значения. Постоянными считаются величины, которые в условиях данной задачи свои значения не меняют.

При этом дополнительно сообщается, что деление величин на переменные и постоянные достаточно условно и зависит от обстоятельств, сопровождающих процесс решения задачи . Одна и та же величина, которая в одних условиях считалась постоянной, в других условиях должна рассматриваться как переменная. Классический пример: сопротивление проводника считается постоянным, пока мы не оказываемся вынужденными учитывать зависимость величины его сопротивления от температуры окружающей среды.

Но, как показывает практика, всего вышеуказанного для корректного решения той или иной задачи бывает недостаточно.

Что такое величина, каждому ясно интуитивно. Уточним это понятие.

В общем случае содержанием процесса решения задачи есть преобразование величин. При этом следует понимать, что в общефилософском смысле величина, представляющая результат решения задачи, уже содержится в её формулировке в неявном виде. Нужно только правильно построить процесс преобразования величин задачи, чтобы этот результат представить явно.

Определение

Будем называть величиной любой математический объект, который несет (или может нести) информацию о том или ином значении.

Форма представления величин может быть различной. Например, величина с числовым значением, равным действительной единице, может быть представлена десятичной констант ой 1,0, функцией Cos(0), а также арифметическим выражением 25,0 – 15,0 – 9,0.

Значения величин можно менять. Так, в результате выполнения действия x = 1,0 величина в форме переменной x оказывается носителем значения действительной единицы. При этом предыдущее значение переменной x теряется. Приведённые примеры уже несколько с иных позиций показывают, что величины могут быть переменными и постоянными.

Определение

Переменные величины обладают тем свойством, что их значения могут быть изменены в результате выполнения тех или иных действий. И это значит, что понятие “переменная величина” отражает возможность, но не факт изменения.

Постоянной величиной (константой) следует считать ту, значение которой, в отличие от переменной, изменить принципиально невозможно.

Например, значение постоянной величины в виде выражения 12+3 равно 15, и изменить его нельзя. При этом необходимо фиксировать смысл знаков, с помощью которых представляется величина. В противном случае, если считать, например, знаки этого выражения цифрами в системе счисления с основанием 5, то тогда его значение окажется равным 10.

Определение

Итак, в математических текстах носителями значений, то есть величинами, являются переменные, константы, обращения к функциям (или просто функции), а также выражения.

Особенности переменных

Обозначения, с которыми связываются определённые значения, в математике называют переменными (термин употребляется как имя существительное).

Например, значение переменной величины x+1 зависит от значения, связанного с обозначением x. Здесь обозначение x используется в качестве переменной. Изменив значение переменной x, мы тем самым изменим и значение переменной величины x+1.

Таким образом, значения переменных величин зависят от значений переменных, которые входят в их состав. Отличительным свойством переменной является то, что конкретное её значение должно быть ей просто приписано (назначено).

Математический подход, определяющий возможность вычисления значений переменных, в данном контексте оказывается неправильным. В математике можно вычислять только значения выражений.

Основное условие использования переменной в математических текстах в окончательном виде таково: для обращения к переменной достаточно указать её обозначение.

Особенности констант

В математических текстах могут быть использованы две разновидности констант: константы-лексемы и именованные константы.

Кстати, программисты на языках высокого уровня, пользуются этим на вполне формальных (законных) основаниях.

С помощью констант-лексем значения постоянных величин указываются непосредственно без выполнения каких-либо операций. Например, для получения значения постоянной величины 12+3, которая является выражением, необходимо выполнить сложение двух констант-лексем 12 и 3.

Определение

Именованная константа представляет собой обозначение, сопоставленное конкретному значению, указанному в виде константы-лексемы.

Такой приём широко используется в естественных науках из соображений удобства записи физических, химических, математических и иных формул. Например: g = 9,81523 – ускорение свободного падения на широте Москвы; π = 3,1415926 – число $π$.

Помимо компактной записи выражений, именованные константы обеспечивают наглядность и значительные удобства в работе с математическими текстами.

Своё значение именованная константа приобретает как результат предварительной договорённости.

Важное свойство любой именованной константы состоит в том, что её значение не рекомендуется менять в пределах некоторого математического текста.

Выражения

Выражения являются составными частями подавляющего большинства математических текстов. С помощью выражений задают порядок вычисления новых значений на основании других заранее известных значений.

В общем случае в составе выражений используют операнды, знаки операций и регулирующие круглые (квадратные, фигурные) скобки.

Определение

Операнды – это общее название объектов, значения которых используют при выполнении операций. Операндами могут быть переменные, константы и функции. Кстати, этот термин весьма популярен в среде программистов. Фрагмент выражения, заключённый в регулирующие скобки, рассматривается как отдельный составной операнд.

Знак операции символизирует вполне определённую совокупность действий, которые должны быть выполнены над соответствующими операндами. Регулирующие скобки устанавливают нужный порядок выполнения операций, который может отличаться от предусмотренного приоритетом операций.

Простейшим случаем выражения является отдельный операнд. В таком выражении нет знаков операций.

Операнд-функция имеет свои особенности. Как правило, такой операнд представляет собой наименование (или знак) функции с последующим указанием в круглых скобках перечня её аргументов. В данном случае круглые скобки являются неотъемлемой принадлежностью функций и к регулирующим не относятся. Отметим, что во многих случаях в операндах-функциях обходятся без скобок (например, 5! – вычисление факториала целого числа 5).

Математические операции

Основные особенности математических операций таковы:

  • знаки операций могут быть указаны с помощью специальных символов, а также с помощью специально оговоренных слов;
  • операции могут быть унарными (выполняемыми над одним операндом) и бинарными (выполняемыми над двумя операндами);
  • для операций установлены четыре уровня приоритетов, определяющих порядок вычисления выражения.

Правила вычисления сложного выражения, содержащего цепочку операций при отсутствии регулирующих скобок, следующие:

  1. cначала вычисляются значения всех функций;
  2. затем поочерёдно выполняются операции в порядке убывания их приоритета;
  3. операции равного приоритета выполняются по порядку слева направо.

При наличии регулирующих скобок выражение содержит составные операнды, значения которых должны быть вычислены в первую очередь.

Некоторые особенности записи математических выражений:

  • не рекомендуется пропускать знаки операций, хотя во многих случаях можно пропустить знак умножения;
  • аргументы функций желательно указываться в круглых скобках;
  • указание подряд двух и более знаков бинарных операций недопустимо; формально допустимо использование нескольких знаков унарных операций подряд, в том числе и вместе с бинарной.

То избавьтесь и от него, возведя обе части тождества в , равную показателю корня. Для примера, приведенного выше, это действие должно выразиться в преобразовании к такому виду: 36*Y² = X. Иногда операцию этого шага удобнее произвести до действия из шага предыдущего.

Преобразуйте выражение таким образом, чтобы все члены тождества, содержащие нужную переменную , оказались в левой части равенства. Например, если формула имеет вид 36*Y-X*Y+5=X и вас интересует переменная X, достаточно будет поменять местами левую и правую половины тождества. А если выразить нужно Y, то формула в результате этого действия должна приобрести вид 36*Y-X*Y=X-5.

Упростите выражение в левой части формулы так, чтобы искомая переменная стала одним из . Например, для формулы из предыдущего шага это можно сделать так: Y*(36-X)=X-5.

Разделите выражения по обе знака равенства на сомножители интересующей вас переменной. В результате в левой части тождества должна остаться только эта переменная. Использованный выше после этого шага приобрел бы такой вид: Y = (X-5)/(36-X).

Если искомая переменная в результате всех преобразований будет возведена в какую в степень, то избавьтесь от степени извлечением корня из обеих частей формулы . Например, формула из второго шага к этому этапу преобразований должна прибрести вид Y²=X/36. А ее окончательный вид должен стать таким: Y=√X/6.

Переменные

Основным показателем переменной является то, что она записывается , а буквой. Под условным обозначением чаще всего скрывается определенное значение. Переменная получила свое название благодаря тому, что ее значение меняется в зависимости от уравнения. Как правило, любая может быть использована в качестве обозначения для такого элемента. Например, если вы знаете, что у вас есть 5 рублей и вы хотите купить яблоки, которые стоят 35 копеек, конечное количество яблок, которые можно купить, (например «С»).

Пример использования

Если есть переменная, которая была выбрана по вашему усмотрению, необходимо составить алгебраическое уравнение. Оно будет связывать между собой известные и неизвестные величины, а также показывать связь между ними. Это выражение будет включать в себя цифры, переменные и одну алгебраическую операцию. Важно отметить, что выражение будет содержать знак равенства.

Полное уравнение содержит значение выражения в целом. Оно отделено от остального уравнения знаком равенства. В предыдущем примере с яблоками 0.35 или 35 копеек, умноженные на «С», является выражением. Для того чтобы создать полное уравнение, необходимо записать следующее:

Мономиальные выражения

Существуют две основные классификации выражений: одночлены . Мономы являются единичной переменной, числом или произведением переменной и числа. Кроме того, выражение из нескольких переменных или выражений с показателями также является мономом. Например, число 7, переменная х, и произведение 7*x - это моном. Выражения с показателями, в том числе x^2 или 3x^2y^3 также одночлены.

Полиномы

Полиномы являются выражениями, которые включают комбинацию из сложения или вычитания двух или более . Любой тип одночленов, в том числе цифр, отдельных переменных или выражений с числами и неизвестными, могут быть включены в полином. Например, выражение х+7 является многочленом, который складывают вместе моном х и моном 7. 3x^2 - также многочлен. 10x+3xy-2y^2 – многочлена, который сочетает три одночлена с использованием сложения и вычитания.

Зависимые и независимые переменные

В независимыми переменными являются неизвестные, которые определяют другие части уравнения. Они стоят отдельно в выражениях и не изменяются вместе с другими переменными.

Значения зависимых переменных определяются с помощью независимых. Их значения зачастую определяются эмпирически.

Из разнообразных способов поведения переменных величин наиболее важен тот, при котором переменная величина стремится к некоторому пределу. В этом случае значения, принимаемые переменной величиной х , становятся сколь угодно близкими к некоторому постоянному числу a - пределу этой переменной величины. Говорят, что переменная величина стремится, неограниченно приближается к постоянному числу а (своему пределу). Дадим более подробно соответствующее определение.

Переменная величина х стремится к пределу a (a - постоянное число), если абсолютная величина разности между х и а становится в процессе изменения переменной величины сколь угодно малой..

То же самое определение можно сказать и другими словами.

Определение. Постоянное число а называется пределом переменной величины х, если - абсолютная величина разности между х и а становится в процессе изменения переменной величины х сколь угодно малой.

Тот факт, что число а , является пределом переменной величины, записывается следующим образом:

( - первые буквы слова limes - предел) или х -> a

Уточним, что следует понимать под словами "величина становится сколь угодно малой", имеющимися вопределении предела. Зададимся произвольным положительным числом , тогда, если, начиная с некоторого момента в изменении переменной величины х, значения сделаются, и будут становиться меньше, чем это .

Переменная величина стремится к пределу , если для любого положительного . начиная с некоторого момента в изменении переменной , выполняется неравенство .

Определение предела имеет простой геометрический смысл: неравенство означает, что находится в -окрестности точки , т.е. в интервале (рис. 26). Таким образом, определение предела в геометрической форме: число является пределом переменной величины , если для любой (произвольно малой) -окрестности точки можно указать такой момент в изменении переменной начиная с которого все ее значения
попадают в указанную -окрестность точки a.

Необходимо представлять себе процесс приближения к пределу в динамике. Взяли некоторую - окрестность точки a ; начиная с некоторого момента в изменении , все значения попадают в эту окрестность. Теперь возьмем более тесную - окрестность точки a ; начиная с некоторого (более отдаленного в сравнении с первым) момента в изменении , все ее значения попадут в - окрестность точки а и т.д. (рис. 1).


Введя определение предела переменной величины, мы постарались его подробно обсудить и расшифровать. Однако в этом определении осталась нераскрытой одна, весьма существенная, деталь; что следует понимать под словами "начиная с некоторого момента в изменении переменной величины "? Это ясно тогда, когда процесс изменения переменной протекает во времени: начиная с некоторого момента (времени). Но не всегда мы имеем дело с переменными величинами, изменение которых протекает во времени. Как же быть в этих случаях? Выход состоит в расшифровке этого места в общем определении предела переменной специфическим образом для каждого типа переменных величин: по-своему для последовательностей, по-своему для функций и т.д.

Предел последовательности. Прежде всего необходимо вспомнить определение последовательности: если все значения, принимаемые переменной величиной х , можно занумеровать помощью всевозможных натуральных чисел х } ,х 2 ,...х п,..., причем значение с большим номером принимается после значения с меньшим номером, то говорят, что переменная х пробегает последовательность значений х х,х 2 ,...х п... ; или просто, что имеется последовательность (числовая последовательность).

Определение. Числовой последовательностью называется действительная функция натурального аргумента, т. е. функция, у которой = N и ЕÌR.

Она обозначается символом , где , или короче, . Число , зависящее от n, называется nым членом последовательности. Расставив значения последовательности по порядку номеров, получаем, что последовательность можно отождествить со счётным набором действительных чисел, т. е.

Примеры:

а) Последовательность является постоянной и состоит из равных чисел (единиц): ;

б) . Для неё

г) .

Для последовательностей содержащееся в общем определении предела переменной высказывание "начиная с некоторого момента в изменении " должно означать - "начиная с некоторого номера", так как члены с большими номерами следуют (по определению последовательности) за членом с меньшим номером. Итак, мы получаем следующее определение предела последовательности:

Определение. Число а называется пределом последовательности , если для любого числа найдётся число , что все числа , у которых , удовлетворяют неравенству .

Соответствующее обозначение

Неравенство можно также записывать в виде или . В этих записях подчеркнуто, что величина х п становится сколь угодно мало отличимой от a , когда номер члена неограниченно возрастает. Геометрически определение предела последовательности означает следующее: для сколь угодно малой -окрестности числа а найдется такой номер N, что все члены последовательности с большими, чем N , номерами попадают в эту окрестность, вне окрестности оказывается лишь конечное число начальных членов последовательности (рис. 2). Это все или некоторые из членов .


x 1 x 2 x N +1 a x N +2 x N x 3

Число в нашем определении зависит от : N = N() . Как говорилось ранее, определение предела следует понимать в развитии, вдинамике, в движении: если мы возьмем другое, меньшее значение для , например то найдется, вообще говоря, другой номер N x > N, такой, что неравенство , выполняется при всех .

Будем записывать определение предела с помощью логических символов (кванторов). Определение предела последовательности с помощью кванторов выглядит так.

Под величиной будем понимать все то, что выражает свойства предмета, явления или процесса. Площадь земельного участка, масса животного, себестоимость продукции, процент жира в молоке и т. д. – все это примеры величин. Каждая из величин может быть измерена с помощью прибора или вычислена, в результате чего получают число, называемое числовым значением величины.

Величины выражаются в определенных единицах. Такие величины называются размерными . Каждой величине свойственна своя единица. Единицы величин образуют систему. Общепринятой является Международная система (СИ). Ее основными единицами являются: метр (м) – единица длины; килограмм (кг) – единица массы; секунда (с) – единица времени; кельвин (к) – единица температуры; кандела (кд) – единица силы света; моль – единица количества вещества.

Величины могут быть безразмерными. Например, доля опытов, в которых наблюдаемое явление произошло.

Когда мы наблюдаем какой-нибудь процесс или явление из области физики, экономики, агрономии или другой области знаний, то видим, что одни величины сохраняют свои значения, другие же принимают различные значения. Например, при равномерном движении точки время и расстояние меняются, а скорость постоянна. Переменной величиной называется величина, которая принимает различные числовые значения. Величина, числовые значения которой не меняются, называется постоянной .

Обозначения: x, y, z, t,… -переменные величины; a, b, c, d,… - постоянные величины.

Совокупность всех числовых значений переменной величины называется областью изменения этой переменной.

Области изменения переменной величины:

(a, b) = {x : a < x < b } – промежуток или интервал;

[a, b ] = {x : a ≤ x ≤ b } – отрезок или замкнутый интервал;

(a , b ] = {x : a < x ≤ b },

[a , b ) = {x : a ≤ x < b } – полуоткрытые интервалы;

(-∞, b ] = {x: x ≤ b },

(-∞, b) = {x: x < b},

[a , +∞) = {x: x ≥ a },

(a , +∞) = {x: x > a },

(-∞, +∞) = {x: -∞ < x < +∞} – бесконечные интервалы.

Произвольный интервал (a, b ), содержащий внутри себя точку , называется окрестностью точки : a < < b .

Если точка середина окрестности, то она называется центром окрестности , величина называется радиусом окрестности .

Переменная величина называется возрастающей , если каждое последующее ее значение больше предыдущего ее значения. Переменная величина называется убывающей , если каждое ее последующее значение меньше предыдущего.

Понятие функции. Область её определения. Способы задания.

К понятию функции приводит изучение разнообразных явлений в окружающем нас мире. Например, каждому значению длины грани куба соответствует его объём; каждому моменту времени в данной местности соответствует определённая температура воздуха; каждому значению возраста животного соответствует его масса; каждому показателю рентабельности соответствует определённая величина прибыли.

Во всех этих примерах общим является то, что каждому числовому значению одной величины сопоставляется определенное числовое значение другой.

Правило f , сопоставляющее каждому числу единственное число , называется числовой функцией, заданной на множестве X и принимающей значения в множестве Y.

Если , то пишут y = f(x) .

Функцией называют также уравнение y = f(x), т.е. формулу где у выражено через х с помощью правила f .

В уравнении y = f(x) «х » называют независимой переменной или аргументом , а у - зависимой переменной или функцией от «х ». Зависимость х и у называется функциональной.

Множество всех значений независимой переменой, для которых определена функция, называется областью определения этой функции, обозначается D(f).

Обычно D(f) представляет собой интервал – открытый, полуоткрытый, бесконечный, или их сумму.

Пример . . Найти D(f) .

Решение. Функция не определена при . D(f) = (-∞, -1) (-1, +∞).

Наиболее часто встречаются три способа задания функции: аналитический, табличный, графический.

Аналитический способ : функция задаётся в виде одной или нескольких формул или уравнений.

Например, 1) , 2) , 3)

Аналитический способ задания функции является наиболее совершенным, так как к нему приложены методы математического анализа, позволяющие полностью исследовать функцию.

Графический способ : задаётся график функции.

Совокупность точек плоскости xOy, абсциссы которых являются значениями независимой переменной, а ординаты – соответствующими значениями функции, называется графиком данной функции.

Часто графики вычерчиваются автоматически самопишущими приборами или изображаются на экране дисплея. Преимущество графического задания является его наглядность, недостатком – его неточность.

Табличный способ : функция задаётся таблицей ряда значений аргумента и соответствующих значений функции.

Например, таблицы тригонометрических функций, логарифмов, таблицы железнодорожных тарифов.

Табличный способ удобен для использования, он широко применяется при регистрации опытов, лабораторных анализов, при подсчете объема грубых кормов в скирдах и т. д. К недостатку способа относится то, что представление о функциональной зависимости здесь не является полным, так как невозможно поместить в таблице все значения аргумента.

Существует еще один способ задания функции, возникший с развитием и внедрением в производство ЭВМ. Этот способ состоит в указании программы для вычисления значения функций на ЭВМ.

Сложная функция. Пусть даны две функции и , при этом множество значений второй функции входит в область определения первой. Тогда любому в силу правила φ соответствует определенное число и , а числу и функция сопоставляет число у . В этом случае правила f и φ сопоставляют каждому х одно значение у , т.е.

Переменные и постоянные величины – это не совсем просто

Школьная математика всегда убеждала и продолжает убеждать нас в том, что вопрос о переменных и постоянных величинах решается очень просто. Переменными считаются величины, которые в условиях данной задачи могут принимать различные значения. Постоянными считаются величины, которые в условиях данной задачи свои значения не меняют.

При этом дополнительно сообщается, что деление величин на переменные и постоянные достаточно условно и зависит от обстоятельств, сопровождающих процесс решения задачи . Одна и та же величина, которая в одних условиях считалась постоянной, в других условиях должна рассматриваться как переменная. Классический пример: сопротивление проводника считается постоянным, пока мы не оказываемся вынужденными учитывать зависимость величины его сопротивления от температуры окружающей среды.

Но, как показывает практика, всего вышеуказанного для корректного решения той или иной задачи бывает недостаточно.

Что такое величина, каждому ясно интуитивно. Уточним это понятие.

В общем случае содержанием процесса решения задачи есть преобразование величин. При этом следует понимать, что в общефилософском смысле величина, представляющая результат решения задачи, уже содержится в её формулировке в неявном виде. Нужно только правильно построить процесс преобразования величин задачи, чтобы этот результат представить явно.

Определение

Будем называть величиной любой математический объект, который несет (или может нести) информацию о том или ином значении.

Форма представления величин может быть различной. Например, величина с числовым значением, равным действительной единице, может быть представлена десятичной констант ой 1,0, функцией Cos(0), а также арифметическим выражением 25,0 – 15,0 – 9,0.

Значения величин можно менять. Так, в результате выполнения действия x = 1,0 величина в форме переменной x оказывается носителем значения действительной единицы. При этом предыдущее значение переменной x теряется. Приведённые примеры уже несколько с иных позиций показывают, что величины могут быть переменными и постоянными.

Определение

Переменные величины обладают тем свойством, что их значения могут быть изменены в результате выполнения тех или иных действий. И это значит, что понятие “переменная величина” отражает возможность, но не факт изменения.

Постоянной величиной (константой) следует считать ту, значение которой, в отличие от переменной, изменить принципиально невозможно.

Например, значение постоянной величины в виде выражения 12+3 равно 15, и изменить его нельзя. При этом необходимо фиксировать смысл знаков, с помощью которых представляется величина. В противном случае, если считать, например, знаки этого выражения цифрами в системе счисления с основанием 5, то тогда его значение окажется равным 10.

Определение

Итак, в математических текстах носителями значений, то есть величинами, являются переменные, константы, обращения к функциям (или просто функции), а также выражения.

Особенности переменных

Обозначения, с которыми связываются определённые значения, в математике называют переменными (термин употребляется как имя существительное).

Например, значение переменной величины x+1 зависит от значения, связанного с обозначением x. Здесь обозначение x используется в качестве переменной. Изменив значение переменной x, мы тем самым изменим и значение переменной величины x+1.

Таким образом, значения переменных величин зависят от значений переменных, которые входят в их состав. Отличительным свойством переменной является то, что конкретное её значение должно быть ей просто приписано (назначено).

Математический подход, определяющий возможность вычисления значений переменных, в данном контексте оказывается неправильным. В математике можно вычислять только значения выражений.

Основное условие использования переменной в математических текстах в окончательном виде таково: для обращения к переменной достаточно указать её обозначение.

Особенности констант

В математических текстах могут быть использованы две разновидности констант: константы-лексемы и именованные константы.

Кстати, программисты на языках высокого уровня, пользуются этим на вполне формальных (законных) основаниях.

С помощью констант-лексем значения постоянных величин указываются непосредственно без выполнения каких-либо операций. Например, для получения значения постоянной величины 12+3, которая является выражением, необходимо выполнить сложение двух констант-лексем 12 и 3.

Определение

Именованная константа представляет собой обозначение, сопоставленное конкретному значению, указанному в виде константы-лексемы.

Такой приём широко используется в естественных науках из соображений удобства записи физических, химических, математических и иных формул. Например: g = 9,81523 – ускорение свободного падения на широте Москвы; π = 3,1415926 – число $π$.

Помимо компактной записи выражений, именованные константы обеспечивают наглядность и значительные удобства в работе с математическими текстами.

Своё значение именованная константа приобретает как результат предварительной договорённости.

Важное свойство любой именованной константы состоит в том, что её значение не рекомендуется менять в пределах некоторого математического текста.

Выражения

Выражения являются составными частями подавляющего большинства математических текстов. С помощью выражений задают порядок вычисления новых значений на основании других заранее известных значений.

В общем случае в составе выражений используют операнды, знаки операций и регулирующие круглые (квадратные, фигурные) скобки.

Определение

Операнды – это общее название объектов, значения которых используют при выполнении операций. Операндами могут быть переменные, константы и функции. Кстати, этот термин весьма популярен в среде программистов. Фрагмент выражения, заключённый в регулирующие скобки, рассматривается как отдельный составной операнд.

Знак операции символизирует вполне определённую совокупность действий, которые должны быть выполнены над соответствующими операндами. Регулирующие скобки устанавливают нужный порядок выполнения операций, который может отличаться от предусмотренного приоритетом операций.

Простейшим случаем выражения является отдельный операнд. В таком выражении нет знаков операций.

Операнд-функция имеет свои особенности. Как правило, такой операнд представляет собой наименование (или знак) функции с последующим указанием в круглых скобках перечня её аргументов. В данном случае круглые скобки являются неотъемлемой принадлежностью функций и к регулирующим не относятся. Отметим, что во многих случаях в операндах-функциях обходятся без скобок (например, 5! – вычисление факториала целого числа 5).

Математические операции

Основные особенности математических операций таковы:

  • знаки операций могут быть указаны с помощью специальных символов, а также с помощью специально оговоренных слов;
  • операции могут быть унарными (выполняемыми над одним операндом) и бинарными (выполняемыми над двумя операндами);
  • для операций установлены четыре уровня приоритетов, определяющих порядок вычисления выражения.

Правила вычисления сложного выражения, содержащего цепочку операций при отсутствии регулирующих скобок, следующие:

  1. cначала вычисляются значения всех функций;
  2. затем поочерёдно выполняются операции в порядке убывания их приоритета;
  3. операции равного приоритета выполняются по порядку слева направо.

При наличии регулирующих скобок выражение содержит составные операнды, значения которых должны быть вычислены в первую очередь.

Некоторые особенности записи математических выражений:

  • не рекомендуется пропускать знаки операций, хотя во многих случаях можно пропустить знак умножения;
  • аргументы функций желательно указываться в круглых скобках;
  • указание подряд двух и более знаков бинарных операций недопустимо; формально допустимо использование нескольких знаков унарных операций подряд, в том числе и вместе с бинарной.