Наследование, сцепленное с полом. Полное и неполное сцепление генов

И оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в г. американским генетиком Т. Морганом , который в последующие годы ( -) обосновал хромосомную теорию наследственности . Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

Генетика пола

Сходный способ определения пола (XY-тип) присущ всем млекопитающим , в том числе и человеку , клетки которого содержат 44 аутосомы и две X-хромосомы у женщин либо XY-хромосомы у мужчин.

Таким образом, XY-тип определения пола , или тип дрозофилы и человека, - самый распространенный способ определения пола , характерный для большинства позвоночных и некоторых беспозвоночных . Х0-тип встречается у большинства прямокрылых, клопов, жуков, пауков, у которых Y-хромосомы нет вовсе, так что самец имеет генотип Х0, а самка - XX.

У всех птиц, большинства бабочек и некоторых пресмыкающихся самцы являются гомогаметным полом, а самки -- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола; при этом набор хромосом самцов обозначают символом ZZ, а самки - символом ZW или Z0.

Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую - ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО - самцы, а с набором ХХУ - самки (у человека - наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). (Особи со всеми этими хромосомными аберрациями у дрозофилы стерильны). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом X-хромосом и числом наборов аутосом.

Наследование признаков, сцепленных с полом

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется. Например, у дрозофилы гены, локализованные в X-хромосоме, как правило, не имеют аллелей в У-хромосоме. По этой причине рецессивные гены в X-хромосоме гетерогаметного пола практически всегда проявляются, будучи в единственном числе.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Явление наследования, сцепленного с полом, было открыто Т. Морганом у дрозофилы.

Х- и У-хромосомы у человека имеют гомологичный (псевдоаутосомный) участок, где локализованы гены, наследование которых не отличается от наследования аутосомных генов.

Помимо гомологичных участков, X- и У-хромосомы имеют негомологичные участки. Негомологичный участок У-хромосомы, кроме генов, определяющих мужской пол, содержит гены перепонок между пальцами ног и волосатых ушей у человека. Патологические признаки, сцепленные с негомологичным участком У-хромосомы, передаются всем сыновьям, поскольку они получают от отца У-хромосому.

Негомологичный участок X-хромосомы содержит в своем составе ряд важных для жизнедеятельности организмов генов. Поскольку у гетерогаметного пола (ХУ) X-хромосома представлена в единственном числе, то признаки, определяемые генами негомологичного участка X-хромосомы, будут проявляться даже в том случае, если они рецессивны. Такое состояние генов называется гемизиготным. Примером такого рода X-сцепленных рецессивных признаков у человека являются гемофилия , мышечная дистрофия Дюшена, атрофия зрительного нерва, дальтонизм (цветовая слепота) и др.

Гемофилия - это наследственная болезнь, при которой кровь теряет способность свертываться. Ранение, даже царапина или ушиб, могут вызвать обильные наружные или внутренние кровотечения, которые нередко заканчиваются смертью. Это заболевание встречается, за редким исключением, только у мужчин. Было установлено, что обе наиболее распространенные формы гемофилии (гемофилия А и гемофилия В) обусловлена рецессивными генами, локализованными в X-хромосоме. Гетерозиготные по данным генам женщины (носительницы) обладают нормальной или несколько пониженной свертываемостью крови.

Фенотипическое проявление гемофилии у девочек будет наблюдаться в том случае, если мать девочки является носительницей гена гемофилии, а отец - гемофиликом. Подобная закономерность наследования характерна и для других рецессивных, сцепленных с полом признаков.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием . Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов - Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер .

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость , которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе .

Понятие о генетической карте

Т. Морган и его сотрудники К. Бриджес, А. Г. Стертевант и Г. Дж. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии , которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в здравоохранении и медицине. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Основные положения хромосомной теории наследственности

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

  • Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
  • Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
  • Гены расположены в хромосоме в линейной последовательности.
  • Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
  • Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
  • Каждый биологический вид характеризуется определенным набором хромосом - кариотипом .

Источники

  • Н. А. Лемеза Л. В. Камлюк Н. Д. Лисов «Пособие по биологии для поступающих в ВУЗы»

Примечания


Wikimedia Foundation . 2010 .

1) Гены находятся в хромосомах.

2) Гены в хромосомах расположены линейно друг за другом и не перекрываются.

3) Гены, расположенные в одной хромосоме, называются сцепленными и составляют группу сцепления. Поскольку в гомологичные хромосомы входят аллельные гены, отвечающие за развитие одних и тех же признаков, в группу сцепления включают обе гомологичные хромосомы; таким образом, количество групп сцепления соответствует числу хромосом в гаплоидном наборе. В пределах каждой группы сцепления вследствие кроссинговера происходит перекомбинирование генов.

4) Закон Моргана – «Гены, расположенные в одной хромосоме, наследуются совместно».

Полное сцепление генов. Если гены расположены в хромосоме непосредственно друг за другом, то кроссинговер между ними практически невероятен. Они почти всегда наследуются вместе, и при анализирующем скрещивании наблюдается расщепление в соотношении 1:1

Неполное сцепление генов. Если гены в хромосомах расположены на некотором расстоянии друг от друга, то частота кроссинговера между ними возрастает и, следовательно, появляются кроссоверные хромосомы, несущие новые комбинации генов: Аb и аВ

Их количество прямо пропорционально расстоянию между генами. При неполном сцеплении в потомстве появляется некоторое количество кроссоверных форм, причем их количество зависит от расстояния между генами. Процент кроссоверных форм указывает на расстояние между генами, расположенными в одной хромосоме.

Взаимодействия неаллельных генов

Комплементарность – явление при котором ген одной аллельной пары способствует проявлению генов другой аллельной пары.

1) У душистого горошка есть ген А, обусловливающий синтез бесцветного предшественника пигмента – пропигмента. Ген В определяет синтез фермента, под действием которогo из пропигмента образуется пигмент. Цветки душистого горошка с генотипом ааВВ и АаЬЬ имеют белый цвет: в первом случае есть фермент, но нет пропигмента, во втором – есть пропигмент. но нет фермента, переводящего пропигмент в пигмент:

2) Новообразование признака – наследование формы гребня у кур некоторых пород. В результате различных комбинаций генов возникают четыре варианта формы гребня:

Pиc. Форма гребня у петухов: А – простой (aabb); Б – гороховидный (ааВВ или ааВВ); В – ореховидный (ААВВ или АаВЬ); Г – розовидный (ААЬЬ или Aabb)

Эпистаз – явление, при котором ген одной аллельной пары препятствует проявлению генов из другой аллельной пары, например развитие окраски плодов у тыквы. Окрашенными плоды тыквы будут только в том случае, если в генотипе-растении отсутствует доминантный ген В из другой аллельной пары. Этот ген подавляет развитие окраски, у плодов тыквы, а его рецессивная аллель b не мешает окраске развиваться (Aabb – желтые плоды; aabb – зеленые плоды; ААВВ и ааВВ – белые плоды).

Полимерия – явление, при котором степень выраженности признака зависим от действия нескольких различных пар аллельных генов причем чем больше в генотипе доминантных генов каждой пары, тем ярче выражен признак. У пшеницы красный цвет зерен определяется двумя генами: a1, a2;. Неаллельные гены обозначены здесь одной буквой А(а) потому, что определяют развитие одного признака. При генотипе А1А1А2А2 окраска зерен наиболее интенсивная, при генотипе а1а1а2а2 они имеют белый цвет. В зависимости от числа доминантных генов в генотипе можно получить все переходы между интенсивно красной и белой окраской:

Рис. 26. Наследование окраски зерен пшеницы (полимерия)

В 1902 г., вскоре после вторичного открытия законов Менделя, "два генетика - А. Сэттон и Т. Бовери независимо друг от друга обнаружили удивительное сходство между поведением хромосом во время образования половых клеток и оплодотворения и насле-: дованием признаков организма. Они высказали ряд предположений, согласно которым: 1) хромосомы являются носителями наследственных факторов (термин «ген» был введен в обиход только в 1909 г. В.Иогансеном), 2) каждая пара факторов локализована в паре гомологичных хромосом, 3) каждая хромосома несет только по одному специфическому, уникальному фактору, 4) каждая хромосома содержит множество различающихся факторов, посколъку число признаков у любого организма гораздо больше числа его хромосом. Эти идеи заложили основу «хромосомной теории наследственности».

Менделевский закон расщепления можно объяснить особенностями поведения хромосом во время мейоза. При образовании гамет распределение аллелей одной пары гомологичных хромосом происходит независимо от распределения других пар аллелей. Поскольку гаплоидное число хромосом в клетках человека равно 23, возможное число комбинаций в мужских или женских гаметах составляет 223.

Сцепление генов

В 1906 г. В. Бэтсон и Р. Пеннет, скрещивая две расы душистого горошка, различавшихся по двум парам признаков, не обнаружили в F2 расщепления в отношении 9:3:3:1. Признаки оставались в исходных родительских комбинациях. Они назвали это явление притяжением. Генетический анализ, проведенный на плодовой мушке дрозофиле Т. Г. Морганом и его учениками, показал, что основой притяжения генов являются хромосомы. Все гены, находящиеся в одной хромосоме, связаны между собой материальным субстратом хромосомы и в силу этого попадают в одну гамету. Гены, расположенные в одной хромосоме и наследующиеся целой группой, получили название группы сцепления. Явление совместного наследования генов, ограничивающее их свободное комбинирование в мейозе, назвали сцеплением генов.

В одном из экспериментов Т. Г. Морган провел несколько серий возвратного скрещивания между дрозофилой с серым телом и длинными крыльями и дрозофилой, у которой были черное тело и короткие крылья. Серое тело и длинные крылья доминируют. Во рсех сериях Морган получал одни и те же результаты: 41,5% потомков имели серое тело, длинные крылья; 41,5% - черное тело, короткие крылья; 8,5% - серое тело, короткие крылья и 8,5% - черное тело, длинные крылья. Если бы аллели, контролирующие развитие этих признаков, находились в одной и той же паре хромосом (т.е. были полностью сцеплены), в потомстве было бы 50 % мух с серым телом, длинными крыльями и 50% - с черным телом, короткими крыльями. Если бы гены, контролирующие эти признаки, лежали в разных хромосомах (т.е. не были сцеплены), они должны были бы распределяться независимо и давать 25% потомков с серым телом, длинными крыльями; 25% - с серым телом, короткими крыльями; 25% - с черным телом, длинными крыльями и 25% - с черным телом, короткими крыльями. Большинство потомков (83%) повторило исходные родительские фенотипы, что говорило о сцеплении изученных генов. Однако, помимо мух с родительскими фенотипами, появились 17% особей с новыми сочетаниями признаков, свидетельствовавшими о неполном сцеплении. Эти новые фенотипы были названы рекомбинантными, а потомки - рекомбинантами. Появление рекомбинантных сочетаний аллелей у 17% потомков объясняется обменом между гомологичными хромосомами во время мейоза. Это явление получило название кроссинговера. Морган предположил, что кроссинговер (обмен аллелями) происходит в результате разрыва и обмена участками гомологичных хромосом во время образования хиазм. Образование хиазм, которые можно непосредственно наблюдать под микроскопом, является цитологическим подтверждением кроссинговера (как генетического явления).

Процент рекомбинантных потомков, от опыта к опыту, для исследованных признаков оставался постоянной величиной. На этом основании А. Стертевант (ученик и сотрудник Моргана) высказал предположение о линейном расположении генов по хромосоме и показал, что величина кроссинговера (выражаемая в процентах) является функцией расстояния между генами. Чем больше расстояние, тем чаще образуются хиазмы, а следовательно, выше процент рекомбинантов, и, наоборот, чем меньше расстояние между генами, тем меньше процент рекомбинантных потомков.

Таким образом, относительные расстояния между генами можно измерять в процентах кроссинговера между ними. Принято считать, что 1% кроссинговера равен 1 сантиморганиде (в честь Т.Г.Моргана).

Хромосомные карты

Т.Г.Морган и его сотрудники были первыми, кто использовал явление кроссинговера для составления генетических карт хромосом. Генетическая карта - это схема линейного расположения генов, локализованных в одной группе сцепления. Карта хромосомы строится путем перевода частоты рекомбинаций между генами в относительные расстояния на хромосоме, выраженные в морганидах. Например, если частота рекомбинаций между генами А и Б равна2,4%, то это свидетельствует, что они расположены на одной и той же хромосоме на расстоянии 2,4 сантиморганиды друг от друга. Если частота рекомбинаций между генами Б и В составляет 6,6%, то они разделены расстоянием 6,6 сантиморганид. Однако приведенные данные не позволяют определить точную последовательность расположения генов на хромосоме (рис. III.10), и только оценив расстояние между генами А и В (в данном случае 9%), можно уверенно сказать, что ген Б должен находиться между генами А и В.

Рис. III. 10.

Таким образом, с помощью кроссинговера можно определить группу сцепления и места расположения генов относительно друг друга. Факт сцепления свидетельствует, что гены находятся в одной хромосоме. Однако свободное их сочетание еще не доказывает, что они расположены в разных хромосомах. Если частота рекомбинаций составляет 50%, то результаты анализа фенотипа потомков не будут отличаться от результатов анализа расщепления при независимом наследовании генов (см. гл. V). Это может происходить, если исследованные гены расположены на значительном расстоянии друг от друга. Для обозначения генов, находящихся в одной и той же хромосоме, но, возможно, и не сцепленных между собой, используется понятие синтеиии (от греч. syn - вместе + tainia - лента). Понятие синтении отражает, таким образом, материальную непрерывность хромосомы как реального материального объекта и не несет сегрегационного смысла.

Долгое время полагали, что число групп сцеплений у человека равно гаплоидному набору хромосом и составляет 23 группы. В настоящее время доказано, что у человека имеется 25 групп сцепления. 22 группы отождествляют с числом пар аутосомных хромосом (22 пары), Х-хромосома и Y-хромосома рассматриваются как две независимые группы сцепления, и гены, локализованные в ДНК митохондрий, формируют 25-ю группу сцепления.

К настоящему времени для человека получены подробные цитологические карты всех хромосом, включая хромосому митохондрий. В качестве примера приведена карта 1-й (рис. III.11) и X-хромосомы (рис. III.12) человека. Установлена (картирована) точная хромосомная локализация более чем для 6 тысяч генов, что составляет только около 15 % от общего числа генов в геноме. В настоящее время хромосомная теория наследственности, сохраняя и дополняя основные классические представления, отражает современные знания о молекулярной организации хромосом, их функционировании как единой материальной структуры в системе целостного генотипа.

Сцепленное наследование. Хромосомная теория наследственности.

Хромосомная теория наследственности.

Основные положення хромосомной теории наследственности. Хромосомный анализ.

Формирование хромосомной теории. В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911-1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Хромосомная теория наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, то есть преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использовалась для изучения наследственных свойств организмов гибридологического анализа.

Основные положения хромосомной теории наследственности.

1. Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.

2. Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.

3. Гены расположены в хромосоме в линейной последовательности.

4. Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).

5. Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).

6. Каждый биологический вид характеризуется определенным набором хромосом - кариотипом.

Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молекулярной биологии было изучено более 500 генов, у мухи дрозофилы - более 1 тыс., а у человека - около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несколько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как X- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов- Ab и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Сцепление и кроссинговер. Из принципов генетического анализа, изложенных в преды­дущих главах, с очевидностью вытекает, что независимое комбинирование признаков может осуществляться лишь при условии, что гены, определяющие эти признаки, находятся в негомологичных хромосомах. Следовательно, у каждого организма число пар признаков, по которым наблюдается независимое наследование, ограничено числом пар хромосом. С другой стороны, оче­видно, что число признаков и свойств организма, контролируемых генами, чрезвычайно велико, а число пар хромосом у каждого вида относительно мало и постоянно.



Остается предположить, что в каждой хромосоме находится не один ген, а много. Если это так, то третий закон Менделя касается распределения хромосом, а не генов, т. е. его действие ограничено.

Явление сцепленного наследования . Из третьего закона Менделя следует, что при скрещивании форм, различающихся двумя парами генов (АВ и аb), получается гибрид АaВb, образующий четыре сорта гамет АВ, Аb, аВ и аb в равных количествах.

В соответствии с этим в анализирующем скрещивании осуществляется расщепление 1: 1: 1: 1, т.е. сочетания признаков, свойственные родительским формам (АВ и аb), встречаются с такой же частотой, как и новые комбинации (Аb и аВ),- по 25%. Однако по мере накопления фактов генетики все чаще стали сталкиваться с отклонениями от независимого наследования. В отдельных случаях новые комбинации признаков (Аb и аВ) в F b совсем отсутствовали - наблюдалось полное сцепление между генами исходных форм. Но чаще в потомстве в той или иной степени преобладали родительские сочетания признаков, а новые комбинации встречались с меньшей частотой, чем ожидается при независимом наследовании, т.е. меньше 50%. Таким образом, в данном случае гены чаще наследовались в исходном сочетании (были сцеплены), но иногда это сцепление нарушалось, давая новые комбинации.

Совместное наследование генов, ограничивающее их свобод­ное комбинирование, Морган предложил называть сцеплением генов или сцепленным наследованием.

Кроссинговер и его генетическое доказательство. При допущении размещения в одной хромосоме более одного гена встает вопрос, могут ли аллели одного гена в гомологичной паре хромосом меняться местами, перемещаясь из одной гомологичной хромосомы в другую. Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения негомологичных хромосом в мейозе, а гены, находящиеся в одной паре гомологичных хромосом, наследовались бы всегда сцепленно - группой.

Исследования Т.Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют перекрестом хромосом или кроссинговером.Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера, так же как и сцепление, оказалось общим для всех животных, растений и микроорганизмов. Наличие обмена идентичными участками между гомологичными хромосомами обеспечивает обмен или рекомбинацию генови тем самым значительно увеличивает роль комбинативной изменчивости в эволюции. О перекресте хромосом можно судить по частоте возникновения организмов с новым сочетанием признаков. Такие организмы называют рекомбинантами.

Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными,а с непретерпевшими - некроссоверными.Соответственно организмы, возникшие от сочетания кроссоверных гамет гибрида с гаметами анализатора, называют кроссоверамиили рекомбинантами,а возникшие за счет некроссоворных гамет гибрида - некроссоверными или нерекомбинантными.

Закон сцепления Моргана. При анализе расщепления в случае кроссинговера обращает на себя внимание определенное коли­чественное отношение кроссоверных и некроссоверных классов. Обе исходные родительские комбинации признаков, образовавшиеся из некроссоверных гамет, оказываются в потомстве анали­зирующего скрещивания в равном количественном отношении. В указанном опыте с дрозофилой тех и других особей было примерно по 41,5%. В сумме некроссоверные мухи составили 83% от общего числа потомков. Два кроссоверных класса по числу особей также одинаковы, и сумма их равна 17%.

Частота кроссинговера не зависит от аллельного состояния генов, участвующих в скрещивании. Если в качестве родителя использовать мух и , то в анализирующем скрещивании кроссоверные (b + vg и bvg + ) и некроссоверные (bvg и b + vg + ) особи появятся с той же частотой (соответственно 17 и 83%), что и в первом случае.

Результаты этих опытов показывают, что сцепление генов реально существует, и лишь в известном проценте случаев оно нарушается вследствие кроссинговера. Отсюда и был сделан вывод, что между гомологичными хромосомами может осуществляться взаимный обмен идентичными участками, в результате чего гены, находящиеся в этих участках парных хромосом, перемещаются из одной гомологичной хромосомы в другую. Отсутствие перекреста (полное сцепление) между генами представляет исключение и известно лишь у гетерогаметного пола немногих видов, например у дрозофилы и шелкопряда.

Изученное Морганом сцепленное наследование признаков получило название закона сцепления Моргана.Поскольку рекомбинация осуществляется между генами, а сам ген кроссинговером не разделяется, его стали считать единицей кроссинговера.

Величина кроссинговера . Величина кроссинговера измеряется отношением числа кроссоверных особей к общему числу особей в потомстве от анализирующего скрещивания. Рекомбинация происходит реципрокно, т.е. между родительскими хромосомами осуществляется взаимный обмен; это обязывает подсчитывать кроссоверные классы вместе как результат одного события. Величина кроссинговера выражается в процентах. Один процент кроссинговера составляет единицу расстояния между генами.

Линейное расположение генов в хромосоме. Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме; чем реже кроссинговер, тем они ближе друг к другу.

Одним из классических опытов Моргана на дрозофиле, доказывающим линейное расположение генов, был следующий. Самки, гетерозиготные по трем сцепленным рецессивным генам, определяющим желтую окраску тела y, белый цвет глаз w и вильчатые крылья bi , были скрещены с самцами, гомозиготными по этим трем генам. В потомстве было получено 1,2% мух кроссоверных, возникших от перекреста между генами у и w; 3,5% − от кроссинговера между генами w и bi и 4,7% - между у и bi.

Из этих данных с очевидностью вытекает, что процент перекреста является функцией расстояния между генами. Поскольку расстояние между крайними генами у и bi равно сумме двух расстояний между у и w , w и bi, следует предположить, что гены расположены в хромосоме последовательно, т.е. линейно.

Воспроизводимость этих результатов в повторных опытах указывает на то, что местоположение генов в хромосоме строго фиксировано, т. е. каждый ген занимает в хромосоме свое опрделенное место - локус.

Основным положениям хромосомной теории наследственности - парности аллелей, их редукции в мейозе и линейному расположению генов в хромосоме - соответствует однонитчатая модель хромосомы.

Одинарный и множественный перекресты. Приняв положения, что генов в хромосоме может быть много и расположены они в хромосоме в линейном порядке, а каждый ген занимает определённый локус в хромосоме, Морган допустил, что перекрест между гомологичными хромосомами может происходить одновременно в нескольких точках. Это предположение было им доказано тоже на дрозофиле, а затем полностью подтвердилось на ряде других животных, а также на растениях и микроорганизмах.

Кроссинговер, происходящий лишь в одном месте, называют одинарным, в двух точках одновременно – двойным, в трёх – тройным и т.д., т.е. он может быть множественным.

Чем дальше отстоят друг от друга в хромосоме гены, тем больше вероятность двойных перекрестов между ними. Процент рекомбинаций между двумя генами тем точнее отражает расстояние между ними, чем оно меньше, так как в случае малого расстояния уменьшается возможность двойных обменов.

Для учета двойного кроссинговера необходимо иметь дополнительный маркер, находящийся между двумя изучаемыми генами. Определение расстояния между генами осуществляют следующим образом: к сумме процентов одинарных кроссоверных классов прибавляют удвоенный процент двойных кроссинговеров. Удвоение процента двойных кроссинговеров необходимо в связи с тем, что каждый двойной кроссинговер возни­кает благодаря двум независимым одинарным разрывам в двух точках.

Интерференция. Установлено, что кроссинговер, происшедший в одном месте хромосомы, подавляет кроссинговер в близлежащих районах. Это явление носит название интерференции.При двойном перекресте интерференция проявляется особенно сильно в случае малых расстояний между генами. Разрывы хромосом оказываются зависимыми друг от друга. Степень этой зависимо­сти определяется расстоянием между происходящими разрывами: по мере удаления от места разрыва возможность другого разрыва увеличивается.

Эффект интерференции измеряется отношением числа наблюдаемых двойных разрывов к числу возможных при допущении полной независимости каждого из разрывов.

Локализация гена. Если гены расположены в хромосоме линейно, а частота кроссинговера отражает расстояние между ними, то можно определить местоположение гена в хромосоме.

Прежде чем определить, положение гена, т. е. его локализацию, необходимо определить, в какой хромосоме находится данный ген. Гены, находящиеся в одной хромосоме и наследующиеся сцепленно, составляют группу сцепления.Очевидно, что количество групп сцепления у каждого вида должно соответствовать гаплоидному набору хромосом.

К настоящему времени группы сцепления определены у наиболее изученных в генетическом отношении объектов, причем во всех этих случаях обнаружено полное соответствие числа групп сцепления гаплоидному числу хромосом. Так, у кукурузы (Zea mays ) гаплоидный набор хромосом и число групп сцепления со­ставляют 10, у гороха (Pisum sativum ) - 7, дрозофилы (Drosophila melanogaster) - 4, домовой мыши (Mus musculus ) - 20 и т. п.

Поскольку ген занимает определенное место в группе сцепления, это позволяет устанавливать порядок расположения генов в каждой хромосоме и строить генетические карты хромосом.

Генетические карты. Генетической картой хромосомназывают схему относительного расположения генов, находящихся в данной группе сцепления. Они составлены пока лишь для некоторых наиболее изученных с генетической точки зрения объектов: дрозофилы, кукурузы, томатов, мыши, нейроспоры, кишечной палочки и др.

Генетические карты составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют.

Для того, чтобы составить карты, необходимо изучить закономерности наследования большого числа генов. У дрозофилы, например, изучено более 500 генов, локализованных в четырех группах сцепления, у кукурузы - более 400 генов, локализованных в десяти группах сцепления и т.д. При составлении генетических карт указывается группа сцепления, полное или сокращенное название генов, расстояние в процентах от одного из концов хромосомы, принятого за нулевую точку; иногда обозначается место центромеры.

У многоклеточных организмов рекомбинация генов бывает реципрокной. У микроорганизмов она может быть односторонней. Так, у ряда бактерий, например у кишечной палочки (Escherichia coli ), перенос генетической информации происходит во время конъюгации клеток. Единственная хромосома бактерии, имеющая форму замкнутого кольца, рвется во время конъюгации всегда в определенной точке и переходит из одной клетки в другую.

Длина переданного участка хромосомы зависит от длительности конъюгации. Последовательность генов в хромосоме оказывается постоянной. В силу этого расстояние между генами на такой кольцевой карте измеряется не в процентах кроссинговера, а в минутах, что отражает продолжительность конъюгации.

Цитологическое доказательство кроссинговера. После того как генетическими методами удалось установить явление кроссинговера, необходимо было получить прямое доказательство обмена участками гомологичных хромосом, сопровождающегося рекомбинацией генов. Наблюдаемые в профазе мейоза картины хиазм могут служить лишь косвенным доказательством этого явления, констатация происшедшего обмена прямым наблюдением невозможна, так как обменивающиеся участками гомологичные хромосомы обычно абсолютна одинаковы но величине и форме.

Чтобы сопоставить цитологические карты гигантских хромо­сом с генетическими, Бриджес предложил воспользоваться коэффициентом кроссинговера.Для этого он разделил общую длину всех хромосом слюнных желез (1180 мкм) на общую длину генетических карт (279 единиц). В среднем это отношение оказалось равным 4,2. Следовательно, каждой единице перекреста на генетической карте соответствует 4,2 мкм на цитологической карте (для хромосом слюнных желез). Зная расстояние между генами на генетической карте какой-либо хромосомы, можно сравнить относительную частоту перекреста в разных ее районах. Например, в Х- хромосоме дрозофилы гены у и ec находятся на расстоянии 5,5%, следовательно, расстояние между ними в гигантской хромосоме должно быть 4,2 мкм Х 5,5 = 23 мкм, но непосредственное измерение дает 30 мкм. Значит, в этом рай­оне Х -хромосомы кроссинговер идет реже средней нормы.

В силу неравномерного осуществления обменов по длине хромосом гены при нанесении их на карту распределяются на ней с разной плотностью. Следовательно, распределение генов на генетических картах можно рассматривать как показатель возможности осуществления перекреста по длине хромосомы.

Механизм кроссинговера. Еще до открытия перекреста хромосом генетическими методами цитологи, изучая профазу мейоза, наблюдали явление взаимного обвивания хромосом, образования ими χ-образных фигур – хиазм (χ-греческая буква «хи»). В 1909 г. Ф.Янсенс высказал предположение, что хиазмы свя­заны с обменом участками хромосом. Впоследствии эти картины послужили дополнительным аргументом в пользу гипотезы генетического перекреста хромосом, выдвинутой Т.Морганом в 1911 г.

Механизм перекреста хромосом связан с поведением гомоло­гичных хромосом в профазе I мейоза.

Кроссинговер происходит на стадии четырех хроматид и приурочен к образованию хиазм.

Если в одном биваленте произошел не один обмен, а два и более, то и этом случае образуется несколько хиазм. Поскольку в биваленте четыре хроматиды, то, очевидно, каждая из них имеет равную вероятность обменяться участками с любой другой. При этом в обмене могут участвовать две, три или четыре хроматиды.

Обмен внутри сестринских хроматид не может приводить к рекомбинациям, поскольку они генетически идентичны, и в силу этого такой обмен не имеет смысла в качестве биологического механизма комбинативной изменчивости.

Соматический (митотический) кроссинговер. Как уже говорилось, кроссинговер происходит в профазе I мейоза при образовании гамет. Однако существует соматический,или митотический, кроссинговер,который осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей.

Известно, что гомологичные хромосомы в профазе митоза обычно не конъюгируют и располагаются независимо друг от друга. Однако иногда удается наблюдать синапсис гомологичных хромосом и фигуры, похо­жие на хиазмы, но при этом редукции числа хромосом не наблюдается.

Гипотезы о механизме кроссинговера. По поводу механизма перекреста существует несколько гипотез, но ни одна из них не объясняет полностью фактов рекомбинации генов и наблюдаемых при этом цитологических картин.

Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Факторы, влияющие на перекрест хромосом. На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х - и Y -хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y -специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) - гомология нуклеотидных последовательностей.

Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контро­ля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено.

Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене.

Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается.

В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.

Законы наследования Моргана и вытекающие из них принципы наследственности. Огромную роль в создании и развитии генетики сыграли работы Т.Моргана. Он автор хромосомной теории наследственности. Им были открыты законы наследования: наследование признаков, сцепленных с полом, сцепленное наследование.

Из этих законов вытекает следующие принципы наследственности:

1. Фактор-ген есть определённый локус хромосомы.

2. Аллели гена расположены в идентичных локусах гомологичных хромосом.

3. Гены расположены в хромосоме линейно.

4. Кроссинговер – регулярный процесс обмена генами между гомологичными хромосомами.

Мобильные элементы генома. В 1948 г. американская исследовательница Мак-Клинток открыла у кукурузы гены перемещающиеся из одного участка хромосомы в другой и назвала феномен транспозицией, а сами гены контролириующими элементами (КЭ). 1.Эти элементы могут перемещаться из одного сайта в другой; 2. их встраивание в данный район влияет на активность генов расположенных рядом; 3. утрата КЭ в данном локусе превращает прежде мутабильный локус в стабильный; 4. в сайтах, в которых присутствуют КЭ, могут возникать делеции, транслокации, транспозиции, инверсии, а также разрывы хромосом. В 1983 г. за открытие мобильных генетических элементов Нобелевская премия была присуждена Барбаре Мак-Клинток.

Наличие мобильных элементов в геномах имеет разнообразные последствия:

1. Перемещения и внедрение мобильных элементов в гены может вызывать мутации;

2. Изменение состояния активности генов;

3. Формирование хромосомных перестроек;

4. Формирование теломер.

5. Участие в горизонтальном переносе генов;

6. Транспозоны на основе Р-элемента используют для трансформации у эукариот, клонирования генов, поиска энхансеров и т.д.

У прокариот существуют три типа мобильных элементов – IS-элементы (инсерции), транспозоны, и некоторые бактериофаги. IS-элементы встраиваются в любой участок ДНК, часто вызывают мутации, разрушая кодирующие или регуляторные последовательности, влияют на экспрессию соседних генов. Бактериофаг может вызывать мутации в результате встраивания.

Роль хромосом в передаче наследственной информации была доказана благодаря: а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующие количеству хромосом; в) построении генетических, а затем и цитологических карт хромосом. Обоснование хромосомной теории представлены в работах Т. Моргана, К. Бриджеса и А. Стертеванта.

В частности, школой Моргана установлены закономерности, которые со временем были подтверждены и углубленные позже, известные как хромосомная теория наследственности.

Основные положения хромосомной теории наследственности:

гены содержатся в хромосомах;

Каждый ген в хромосоме занимает определенное место - локус. Гены в хромосомах расположены линейно;

Между гомологичными хромосомами может происходить обмен аллелями гена;

Расстояние между генами в хромосоме пропорционально процентные кроссинговера между ними;

Во время мейоза, который происходит только при образовании гамет, диплоидное число хромосом уменьшается вдвое;

Между генами гомологичных родительских и материнских групп сцепления могут происходить изменения благодаря кроссинговера;

Сила сцепления между генами обратно пропорциональна расстоянию между ними. Расстояние между генами измеряется в процентах кроссинговера. Один процент кроссинговера соответствует одной морга- Ниде;

Каждый биологический вид характеризуется специфическим набором хромосом - кариотипом.

Одним из первых весомых доказательств роли хромосом в явлениях наследственности стало открытие закономерности, согласно которой пол наследуется как менделирующих признак, то есть по законам Менделя. У всех млекопитающих (в том числе и у человека), большинства животных и дрозофилы женские особи в соматических клетках имеют две Х-хромосомы, а мужские - X- и Y-хромосомы. В этих организмов все яйцеклетки содержат X-хромосомы и в этом отношении они одинаковы (гомогаметным), в отличие от сперматозоидов, которые образуются двух типов: один содержит Х-хромосому, второй - У-хромосому (гетерогаметным). Поэтому при оплодотворении возможны две комбинации:

1) яйцеклетка с X-хромосомой оплодотворяется сперматозоидом с Х-хромосомой, образуется зигота с двумя Х-хромосомами.

С такой зиготы развивается организм женского пола;

2) яйцеклетка с Х-хромосомой оплодотворяется сперматозоидом с Y-хромосомой. В зиготе объединяются X- и Y-хромосомы.

С такой зиготы развивается организм мужского пола. Таким образом сочетание половых хромосом в зиготе, а следовательно, и развитие пола человека, млекопитающих и дрозофилы зависит от того, каким сперматозоидом будет оплодотворена яйцеклетка. Пол, имеющий две одинаковые хромосомы - гомогаметным, так как все гаметы одинаковы, а пол с различными половыми хромосомами - гетерогаметным. У человека, млекопитающих, дрозофилы гомогаметным является женский пол, а мужской - гетерогаметным, у птиц и бабочек, наоборот, гомогаметным - мужская, гетерогаметным - женская.

У человека признаки, наследуемые через У-хромосому, могут быть только у лиц мужского пола, а через Х-хромосому - у обоих полов. Особь женского пола может быть как гомо-, так и гетерозиготной по генам, которые локализованы в X-хромосоме. Рецессивные аллели генов у нее проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, то все локализованные в ней гены, даже рецессивные, проявляются в фенотипе - организм гемизиготний.

Известно, что у человека некоторые патологические состояния наследуются сцеплено с полом. К ним, в частности, относится гемофилия (пониженная скорость свертывания крови), что приводит повышенное кровотечение. Аллель гена, который контролирует нормальную свертываемость крови (Я) и его аллельные пара "ген гемофилии" (А) содержится в X-хромосоме, причем первый доминирует над другим. Запись генотипа женщины гетерозиготной по этому признаку имеет вид - ХНХh. Такая женщина будет нормальный процесс свертывания крови, но будет носителем этого недостатка. У мужчин только одна Х-хромосома. Итак, если у него в Х-хромосоме содержится аллель Н, то он будет иметь нормальный процесс свертывания крови, а если аллель А, то болеть гемофилией; Y-хромосома не несет генов, которые определяют механизм свертывания крови. Аналогичным образом наследуется дальтонизм (аномалия зрения, когда человек не различает цветов, чаще всего не отличает красный от зеленого).