Ядерный двигатель глобальной крылатой ракеты. История и современность

Журналистам, что Россия готовится провести летные испытания опытных образцов усовершенствованной крылатой ракеты "Буревестник" с ядерным двигателем. В ведомстве указали, что малозаметная крылатая ракета с практически неограниченной дальностью, несущая ядерную боевую часть, является неуязвимой для всех существующих и перспективных систем как противоракетной, так и противовоздушной обороны.

Редакция ТАСС-ДОСЬЕ подготовила справочный материал о проектах использования ядерных двигателей в крылатых ракетах.

Ядерные двигатели

Идея использовать ядерные двигатели в авиации и космонавтике возникла в 1950-х годах вскоре после создания технологии управляемой атомной реакции. Плюсом такого двигателя является длительное время работы на практически не расходуемом в полете компактном источнике топлива, что означает неограниченную дальность полета. Минусами были большой вес и габариты атомных реакторов того времени, сложность их перезарядки, необходимость обеспечения биологической защиты обслуживающего персонала. С начала 1950-х годов ученые СССР и США независимо друг от друга изучали возможность создания разных типов атомных двигателей:

  • ядерный прямоточный воздушно-реактивный двигатель (ЯПВРД): в нем поступающий через воздухозаборник воздух попадает в активную зону реактора, нагревается и выбрасывается через сопло, создавая нужную тягу;
  • ядерный турбореактивный двигатель: действует по похожей схеме, но воздух перед попаданием в реактор сжимается компрессором;
  • ядерный ракетный двигатель: тяга создается за счет нагрева реактором рабочего тела, водорода, аммиака, других газов или жидкостей, которые затем выбрасываются в сопло;
  • ядерный импульсный двигатель: реактивную тягу создают поочередные ядерные взрывы малой мощности;
  • электрореактивный двигатель: вырабатываемая реактором электроэнергия используется для нагрева рабочего тела до состояния плазмы.

Наиболее подходящими для крылатых ракет и самолетов являются прямоточный воздушно-реактивный или турбореактивный двигатель. В проектах крылатых ракет предпочтение традиционно отдавалось первому варианту.

В СССР работами по созданию ядерного прямоточного воздушно-реактивного двигателя занималось ОКБ-670 под руководством Михаила Бондарюка. ЯПВРД был предназначен для модификации межконтинентальной крылатой ракеты "Буря" ("изделие 375"), которую с 1954 года проектировало ОКБ-301 под руководством Семена Лавочкина. Стартовый вес ракеты достигал 95 т, дальность должна была составить 8 тыс. км. Однако в 1960 году через несколько месяцев после смерти Лавочкина проект "обычной" крылатой ракеты "Буря" был закрыт. Создание же ракеты с ЯПВРД так и не вышло за рамки предэскизного проектирования.

Впоследствии специалисты ОКБ-670 (переименованного в КБ "Красная Звезда") занялись созданием ядерных ракетных двигателей для космических и боевых баллистических ракет, однако ни один из проектов так и не дошел до стадии испытаний. После смерти Бондарюка работы над авиационными ядерными двигателями были фактически прекращены.

К ним вернулись лишь в 1978 году, когда при НИИ тепловых процессов было образовано конструкторское бюро из бывших специалистов "Красной Звезды", занимавшееся прямоточными воздушно-реактивными двигателями. Одной из их разработок стал ядерный прямоточный воздушно-реактивный двигатель для более компактной, по сравнению с "Бурей", крылатой ракеты (стартовой массой до 20 т). Как писали СМИ, "проведенные исследования показали принципиальную возможность реализации проекта". Однако о ее испытаниях не сообщалось.

Само КБ просуществовало под различными названиями (НПВО "Пламя", ОКБ "Пламя-М") до 2004 года, после чего закрыто.

Опыт США

С середины 1950-х годов ученые Радиационной лаборатории в Ливерморе (штат Калифорния) в рамках проекта Pluto разрабатывали ядерный прямоточный воздушно-реактивный двигатель для сверхзвуковой крылатой ракеты.

К началу 1960-х годов были созданы несколько прототипов ЯПВРД, первый из которых - Tory-IIA - был испытан в мае 1961 года. В 1964 году начались испытания новой модификации двигателя - Tory-IIC, который смог проработать пять минут, показав тепловую мощность около 500 МВт и тягу в 16 т.

Однако вскоре проект был закрыт. Традиционно считают, что причиной этого как в США, так и в СССР стало успешное создание межконтинентальных баллистических ракет, способных доставить ядерные боезаряды на территорию противника. В этой ситуации межконтинентальные крылатые ракеты не выдержали конкуренции.

В России

1 марта 2018 года, выступая с посланием Федеральному собранию РФ, президент России Владимир Путин сообщил, что в конце 2017 года на Центральном полигоне Российской Федерации была успешно испытана новейшая крылатая ракета с ядерной энергоустановкой, дальность полета которой "является практически неограниченной". Ее разработка была начата после выхода США в декабре 2001 года из Договора об ограничении систем противоракетной обороны 1972 года. Название "Буревестник" ракета получила 22 марта 2018 года по итогам открытого голосования на сайте Минобороны.

2018 год запомнится неприятной вещью: мир снова заговорил об атомном оружии и военных ядерных технологиях. Люди опять начинают задумываться, сколько времени летит до нас баллистическая ракета, куда бежать в случае тревоги, как устроены и где расположены бомбоубежища, какие поражающие факторы есть у атомных и термоядерных зарядов, есть ли у нас что-то, чем можно ответить и, в конце концов, можно ли всего этого избежать. «Популярная механика» попытается ответить на некоторые из этих невеселых вопросов.

Ядерный след

Проблема досягаемости территории США для СССР, окруженного со всех сторон американскими базами, возникла сразу после окончания Второй мировой войны. Американские и английские стратегические бомбардировщики с ядерным оружием размещались вокруг не для мифической защиты от международных террористов, а конкретно для нападения на Советский Союз. Достичь же территории США с советских аэродромов классические советские бомбардировщики не могли: для этого требовалась дальность не менее 16 000 км. Для поражения же удаленных целей на территории США и свободного выбора трассы полета для обхода районов ПВО требовалась дальность в 25 000 км. Обеспечить ее на сверхзвуковом режиме могли только самолеты с ядерными силовыми установками.

Турбореактивный. Атомный

Сегодня подобные проекты кажутся невероятными, а в начале 1950-х задача была не сложнее, чем размещение реакторов на подводных лодках: и то и другое давало практически неограниченный радиус действия. Самолеты было поручено конструировать КБ Туполева и Мясищева, а «специальные двигатели» — КБ Архипа Люльки.

368 целей для ядерных зарядов, чтобы убить четверть населения Китая (источник: The New York Times)

Турбореактивный двигатель с атомным реактором (ТРДА) по конструкции очень сильно напоминает обычный турбореактивный двигатель (ТРД). Только если в ТРД тяга создается расширяющимися при сгорании керосина горячими газами, то в ТРДА воздух нагревается, проходя через реактор. Активная зона авиационного атомного реактора на тепловых нейтронах набиралась из керамических тепловыделяющих элементов, в которых имелись продольные шестигранные каналы для прохода нагреваемого воздуха. Расчетная тяга разрабатываемого двигателя должна была составить 22,5 т. Рассматривалось два варианта компоновки ТРДА — «коромысло», при котором вал компрессора располагался вне реактора, и «соосный», где вал проходил по оси реактора. В первом случае вал работал в щадящем режиме, во втором требовались специальные высокопрочные материалы. Но соосный вариант обеспечивал меньшие размеры двигателя. Поэтому одновременно прорабатывались варианты с обеими двигательными установками.

Главным недостатком таких двигателей так называемой открытой схемы, когда атмосферный воздух проходил напрямую через реактор, было сильное радиационное заражение отработанного воздуха, что, например, исключало возможность применения обычной кабины экипажа. Он должен был располагаться в герметичной многослойной 60-тонной (!) свинцовой капсуле и управлять машиной посредством телевизионных и радиолокационных экранов. Расчетная масса такого самолета должна была превысить 250 т. Появилась логичная идея сделать бомбардировщик в беспилотном варианте — в виде своеобразной гигантской крылатой ракеты. Однако в ВВС не поддержали проект: в 1950-х годах автоматические системы управления не могли обеспечить маневренность для преодоления системы ПВО США.


124 цели для ядерных зарядов, чтобы убить четверть населения США (источник: The New York Times)

Космический буксир

За прошедшие 70 лет мало что изменилось: мы даже еще плотнее окружены американскими базами, досягаемость территории США все еще является проблемой, разве что мы научились делать прекрасные системы автономного управления — посадка «Бурана» тому подтверждение. И как в пятидесятые, никакой альтернативы для длительного межконтинентального полета в атмосфере, кроме ядерного двигателя, нет. А тема эта не просто секретная, а суперсекретная. Тем не менее что-то мы знаем, а о чем-то можно догадаться.

Последние открытые данные поступали из незавершенного проекта ядерной энергодвигательной установки для «космического буксира». Занимался космическим реактором Институт имени Келдыша, в котором до недавнего времени довольно охотно делились информацией об этом проекте. Но несколько лет назад все общение с журналистами на эту тему представители института прекратили — прямой признак, что работы, которые раньше велись для «мирного космоса», переросли в немирные. Но кое-что удалось узнать ранее.


Например, что в реакторе для ядерного реактивного двигателя (ЯРД) использовалось уникальное топливо, состоявшее из карбидов — соединений урана, вольфрама и ниобия с углеродом. Это позволило далеко опередить по допустимым температурам классический оксид урана, который плавится примерно при 2500 градусах. Такое топливо неплохо работало в водородной среде, в которую, правда, приходилось добавлять гептан для подавления химических реакций карбидов с водородом. Но в окислительной среде, какой является раскаленный до пары тысяч градусов воздух (а наша ядерная крылатая ракета летит в атмосфере), карбиды работать не смогут: углерод будет окисляться кислородом, а оставшиеся металлы расплавятся и улетят с потоком теплоносителя. Подольское НПО «Луч», производившее эти ТВЭЛы, научилось покрывать топливные стерж-ни металлическим ниобием, что расширило список различных сред, в которых это топливо устойчиво, но при тех температурах, которые нужны в ЯРД, ниобий реагирует с кислородом, образуя оксид, и тоже не может защитить топливо. Может быть, сплав тантала с гафнием мог бы быть достаточно стойким в этих условиях, но гафний сильно поглощает нейтроны, что затрудняет конструирование реактора.

Следовательно, напрямую ЯРД в двигатель для полета в атмосфере не конвертируется. Хотя многие идеи заимствовать можно, и они являются общими для разных малогабаритных и космических реакторов. Например, органы управления реактором в виде поворотных барабанов, врезанных в боковой отражатель нейтронов из бериллия. Примерно такая схема применялась и в советских космических ядерных энергетических установках «Бук» и «Топаз», и в некоторых американских реакторах, тоже предназначенных для использования вне Земли. А топливо, скорее всего, придется применять оксидное, как в большинстве реакторов по всему миру. Во всяком случае, пока завеса секретности не опустилась на «космический буксир», келдышевцы планировали использовать в этой ЯЭДУ именно оксидное топливо.


Быстрые и медленные нейтроны

Но почему-то неспециалисты дружно решили, что основой двигателя крылатой ракеты должен стать реактор на быстрых нейтронах. Объяснение простое: ради компактности устройства в нем нужно применять ядерное топливо высокого обогащения, а тогда замедлитель оказывается не нужен, ведь он увеличивает сечение деления у урана-235, мало влияя на сечение захвата ураном-238. Кроме того, медленные нейтроны имеют ту же температуру, что и замедлитель, а значит, их энергия растет вместе с температурой в реакторе, уменьшая их преимущества. Действительно, «Бук» — самый массовый космический реактор — работал на быстрых нейтронах, а его наследник «Топаз» — на промежуточных. Однако реактор на тепловых нейтронах может быть не менее компактным: замедлитель из гидрида циркония позволяет создать реактор с диаметром активной зоны меньше полуметра, что и было реализовано в советском ЯРД. А для снижения температуры замедлитель должен охлаждаться отдельным потоком теплоносителя, тогда можно реализовать все преимущества медленных нейтронов. Кроме того, в реакторе на тепловых нейтронах можно использовать весьма экзотический изотоп — америций-242м. Несмотря на то что сейчас производство этого изотопа не налажено, организовать его гораздо проще, чем производство полумифического калифорния — в отработанном ядерном топливе америций-241 накапливается сам собой, и его можно выделять достаточно простыми химическими реакциями (и его выделяют, так как он используется, например, в некоторых детекторах дыма). Если из оксида америция-241 спрессовать таблетки и загрузить их в реактор на быстрых нейтронах, тот же БН-800, то можно быстро накопить достаточное количество америция-242м. Буква в конце названия означает, что это ядерный изомер, находящийся в возбужденном состоянии. Дело в том, что у обычного америция-242, чьи ядра находятся в наинизшем энергетическом состоянии, период полураспада всего 16 ч, а у ядра 242м — целых 140 лет. А зачем он нужен? С замедлителем из гидрида циркония он имеет критическую массу меньше 50 г! Соответственно, реактор на нем будет иметь диаметр (без отражателя) порядка 10 см. Такой реактор, правда, с водяным замедлителем, предлагалось использовать в медицине, для нейтронно-захватной терапии. А вот чего точно не будет в реакторе для крылатой ракеты, так это торцевых отражателей нейтронов. Для них просто не остается места: с одной стороны должен быть воздухозаборник, с другой — сопло.


Реконструкция

Несмотря на секретность, примерный внешний облик двигателя представить можно. Впрочем, он не изменился с 60-х годов прошлого века, когда случилась первая волна разработки ядерных самолетов — все схемы были ясны уже тогда. Они разделяются на два принципиально различных класса — с прямым нагревом воздуха в реакторе и с косвенным, когда между воздухом и реактором есть промежуточный теплоноситель и теплообменник. Вторая схема гораздо чище, так как продукты деления не попадают в воздух, но для одноразовых беспилотных аппаратов годится и первая.


Ядерный турбореактивный двигатель

Во время первых экспериментов с ядерными самолетами NB-36 и Ту-95ЛЛ воздушный винт еще не сдал своих позиций, но сейчас был бы явным анахронизмом, ограничивающим скорость дозвуковым уровнем. Уже через пять лет все проектируемые атомолеты стали чисто реактивными. На видео в президентском послании была показана ракета наземного базирования, стартующая с помощью обычного твердотопливного ракетного двигателя, что логично: даже если наш ядерный двигатель не выбрасывает осколки деления прямо в воздух, то гамма-радиацию от работающего реактора полностью заэкранировать невозможно, слишком тяжелой получится защита. Значит, реактор надо запускать на большой высоте — хотя бы в паре километров. Тогда воздух сам будет поглощать радиацию. А если летательный аппарат уже на высоте и разогнан до сверхзвуковой скорости, правильнее строить маршевую ступень с прямоточным двигателем. Примерно так работала сконструированная под руководством С. А. Лавочкина крылатая ракета «Буря», конкурировавшая когда-то с Р-7 за право зваться защитницей наших рубежей. Тогда крылатая ракета проиграла: ПВО совершенствовалось на глазах, а ПРО существовало только на бумаге, да и в реализуемости перехвата баллистической ракеты тогда сомневались многие. Сейчас ситуация изменилась: ПВО и ПРО превратились в единый комплекс средств обнаружения и перехвата, и обмануть его можно лишь одним способом — маневрированием. Для баллистических ракет это тоже возможный способ, но очень энергозатратный, ведь ракета все свое топливо сжигает сразу после старта, и маневрирование в атмосфере возможно лишь за счет уменьшения дальности.


Ядерный прямоточный воздушно-реактивный двигатель

Вот тут-то ядерный двигатель и получил второй шанс. Конечно, у реактора есть ресурс, и, чем жестче требования к реактору, тем этот ресурс меньше. Но даже у «Бука» ресурс превышал несколько месяцев непрерывной работы, а крылатой ракете нужна максимум пара суток, чтобы обогнуть земной шар по максимально удаленному от пусковых установок противоракет маршруту. Ну и, поскольку это явно оружие Судного дня, экономические требования отступают на второй план по сравнению даже с «космическим буксиром». А значит, топливные стержни покрывать можно хоть иридием, хоть золотом.

А был ли мальчик?

И все же возможно ли это? Ведь нам пообещали, что габариты ракеты с атомным реактором не превысят габаритов обычной крылатой ракеты большой дальности — Х-101 или того же «Калибра». Несложно посчитать, что одно это условие убивает на корню возможность использования теплообменников. Хотя теплообменник «газ — газ» на такие тепловые потоки, в принципе, реализуем, что показывает проект космического самолета с использованием атмосферного кислорода SABRE, в диаметр 533 мм он не впишется никак. Значит, нагрев может быть только непосредственный, получается, и выхлоп будет сильно радиоактивный. Следовательно, вероятность того, что никаких турбин и компрессоров в этом двигателе не будет, близка к единице. А прямоточный двигатель навязывает скорость полета в диапазоне 3−3,5 М. Примерно как у самого быстрого самолета SR-71A или крылатой ракеты «Буря». Но если «Буря» шла к цели на высоте 15−18 км и перед целью делала «горку» на 35 км, выполняя противозенитный маневр, то нынешняя ракета, видимо, также будет идти к цели на высоте около 20 км, чтобы не заразить радиацией собственную территорию (ведь даже после обмена ударами придется как-то восстанавливать обычную жизнь), но перед целью, вероятно, должна будет снизиться и прорывать ПВО на предельно малой высоте, огибая рельеф. Поскольку летчиков на ней не будет, это можно делать с ускорениями до 20 g или больше.


Резюме тут очень простое. Если эта ракета действительно существует и опубликованные о ней данные соответствуют действительности, то, несмотря на высшую степень секретности, мы можем о ней сказать довольно много:

  • она точно использует твердотопливную разгонную ступень и запускает реактор на большой высоте и скорости;
  • она точно применяет многие технологии, созданные для космических реакторов и ядерных ракетных двигателей, включая использование регулирующих органов, вынесенных за пределы активной зоны, бериллиевый отражатель, возможно, замедлитель из гидрида циркония, возможно, карбидное ядерное топливо, покрытое чем-то для защиты от окисления;
  • ее маршевая ступень, скорее всего, использует прямоточный двигатель с непосредственным нагревом, что исключает ее применение кроме как в самом крайнем случае совместно с системой «Периметр» (так называлась советская система, которую американцы окрестили «Мертвой рукой»);
  • скорость ее полета на большей части траектории должна быть около 3 М, а дальность — примерно два раза «вокруг шарика»;
  • вряд ли их можно сделать достаточно много, чтобы заменить баллистические ракеты на обычном химическом топливе.

Ядерный ракетный двигатель - ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела - порядка 8-50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа - твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым - режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.

03-03-2018

Валерий Лебедев (обзор)

    • В истории уже существовали разработки крылатых ракет с прямоточным ядерным воздушным двигателем: это ракета SLAM (она же Плутон)в США с реактором TORY-II (1959 г.), концепт Avro Z-59 в Великобритании, проработки в СССР.
    • Коснемся принципа работы ракеты с атомным реактором.Говорим только о прямоточном ядерном двигателе, который как раз и имелся в виду в выступлении Путина в его рассказе о крылатой ракете с неограниченной дальностью полета и полной неуязвимостью.Атмосферный воздух в этой ракете нагревается ядерной сборкой до высоких температур и с большой скоростью выбрасывается из сопла сзади. Испытывался в России (в 60-х) и у американцев (с 1959 г.). Имеет два существенных недостатка: 1. Смердит как та же ядреная бомба, так что за время полета засрёт всё на траектории. 2. В тепловом диапазоне смердит так, что из космоса его увидит даже северокорейский спутник на радиолампах. Соответственно и грохнуть такую летающую керосинку можно вполне себе уверенно.
      Так что показанные в Манеже мультики ввергли в недоумение, перерастающее в беспокойство по поводу здоровья (умственного) режиссера этой фигни.
      В советское время такие картинки (плакатики и прочие утехи для генералов) называли "чебурашками".

      В общем это обычная схема прямоточки, осесимметричная с обтекаемым центральным телом и обечайкой. Форма центрального тела такова, чтобы за счет скачков уплотнения на входе воздух сжимался (рабочий цикл запускается на скорости 1 М и выше, до которой разгон за счет стартового ускорителя на обычном твердом топливе);
      - внутри центрального тела ядерный источник тепла с монолитной АЗ;
      - центральное тело скреплено с оболочкой 12-16 пластинчатыми радиаторами, куда от АЗ тепловыми трубами отводится тепло. Радиаторы находятся в зоне расширения перед соплом;
      - материал радиаторов и центрального тела, например, ВНДС-1, сохраняющий конструктивную прочность до 3500 К в пределе;
      - нагреваем его для верности до 3250 К. Воздух, обтекая радиаторы, нагревается и охлаждает их. Далее он проходит через сопло, создавая тягу;
      - для охлаждения обечайки до приемлемых температур -- вокруг нее строим эжектор, который заодно увеличивает тягу на 30-50%.

      Капсулированный монолитный блок ЯЭУ можно либо устанавливать в корпус перед пуском, либо держать до пуска в докритическом состоянии, а ядерную реакцию запускать при необходимости. Как конкретно -- не знаю, это инженерная задача (а значит, поддающаяся решению). Так это явно оружие первого удара, это к бабке не ходи.
      Капсулированный блок ЯЭУ можно сделать таким, чтобы он гарантированно не разрушался при ударе в случае аварии. Да, он получится тяжелым -- но он получится тяжелым в любом случае.

      Для выхода на гиперзвук понадобиться отводить совершенно неприличную плотность энергии в единицу времени на рабочее тело. С вероятностью 9/10 существующие материалы на длинных периодах времени (часы/дни/недели) такое не потянут, скорость деградации будет - бешеная.

      Да и вообще, среда там будет агрессивная. Защита от излучения - тяжелая, иначе все датчики/электронику можно на свалку сразу (желающие могут вспомнить Фукусиму и вопросы: "а почему роботам убирать не поручили?").

      И т.д... "Светиться" подобный вундервафль будет знатно. Как передавать на него управляющие команды (если там все напрочь экранировать) - непонятно.

      Коснемся достоверно созданных ракет с ядерной энергетической установкой - американской разработки - ракеты SLAM с реактором TORY-II (1959).

      Вот этот двигатель с реактором:

      Концепт SLAM был трехмаховым низколетящей ракетой внушительных габаритов и массы (27 тонн, 20+ тонн после сброса стартовых ускорителей). Страшно затратный низколетящий сверхзвук позволял по максимуму использовать наличие практически не ограниченного источника энергии на борту, кроме того, важной чертой ядерного воздушного реактивного двигателя является улучшения кпд работы (термодинамического цикла) при росте скорости, т.е. та же идея, но на скоростях в 1000 км/ч имела бы гораздо более тяжелый и габаритный двигатель. Наконец, 3М на высоте в сотню метров в 1965 году означало неуязвимость для ПВО.

      Двигатель TORY-IIC. Твэлы в активно зоне представляю собой шестигранные полые трубки из UO2, покрытые защитной керамической оболочкой, собранные в инкалоевых ТВС.

      Получается, что раньше концепция Крылатой Ракеты с ЯЭУ "завязывалась" на высокой скорости, где преимущества концепции были сильными, а конкуренты с углеводородным топливом ослабевали.

    • Ролик о старой американской ракете SLAM

  • Показанная же на презентации Путина ракета околозвуковая или слабосверхзвуковая (если, конечно, верить, что на видео именно она). Но при этом габарит реактора уменьшился значительно по сравнению с TORY-II от ракеты SLAM, где он составлял аж 2 метра включая радиальный отражатель нейтронов из графита.
    Схема ракеты SLAM. Все приводы пневматические, аппаратура управления находится в капсуле, ослабляющей излучение.

    Можно ли вообще уложить реактор в диаметр 0,4-0,6 метра? Начнем с принципиально минимального реактора - болванки из Pu239. Хороший пример реализации такой концепции - космический реактор Kilopower, где, правда, используется U235. Диаметр активной зоны реактора всего 11 сантиметров! Если перейти на плутоний 239 размеры АЗ упадут еще в 1,5-2 раза.
    Теперь от минимального размера мы начнем шагать к реальном ядерному воздушному реактивному двигателю, вспоминая про сложности. Самым первым к размеру реактора добавляется размер отражателя - в частности в Kilopower BeO утраивает размеры. Во-вторых мы не можем использовать болванку U или Pu - они элементарно сгорят в потоке воздуха буквально через минуту. Нужна оболочка, например из инкалоя, который противостоит мгновенному окислению до 1000 С или других никелевых сплавов с возможным покрытием керамикой. Внесение большого количества материала оболочек в АЗ сразу в несколько раз увеличивает необходимое количество ядерного топлива - ведь "непродуктивное" поглощение нейтронов в АЗ теперь резко выросло!
    Более того, металлическая форма U или Pu теперь не годится - эти материалы и сами не тугоплавкие (плутоний вообще плавится при 634 С), так еще и взаимодействуют с материалом металлических оболочек. Переводим топливо в классическую форму UO2 или PuO2 - получаем еще одно разбавление материала в АЗ, теперь уже кислородом.

    Наконец, вспоминаем предназначение реактора. Нам нужно прокачивать через него много воздуха, которому мы будем отдавать тепло. примерно 2/3 пространства займут "воздушные трубки". В итоге минимальный диаметр АЗ вырастает до 40-50 см (для урана), а диаметр реактора с 10-сантиметровым бериллиевым отражателем до 60-70 см.

    Воздушный ядерный реактивный двигатель можно впихнуть в ракету диаметром около метра, что впрочем, все же не кардинально больше озвученных 0,6-0,74 м, но все же настораживает.

    Так или иначе, ЯЭУ будет иметь мощность ~несколько мегаватт, питаемые ~10^16 распадов в секунду. Это означает, что сам реактор будет создавать радиационное поле в несколько десятков тысяч рентген у поверхности, и до тысячи рентген вдоль всей ракеты. Даже установка нескольких сот кг секторной защиты не сильно снизит эти уровни, т.к. нейтронны и гамма-кванты будут отражаться от воздуха и "обходить защиту". За несколько часов такой реактор наработает ~10^21-10^22 атомов продуктов деления c активностью в несколько (несколько десятков) петабеккерелей который и после остановки создадут фон в несколько тысяч рентген возле реактора. Конструкция ракеты будет активирована до примерно 10^14 Бк, хотя изотопы будут в основном бета-излучателями и опасны только тормозным рентгеном. Фон от самой конструкции может достигать десятки рентген на расстоянии 10 метров от корпуса ракеты.

    Все эти сложности дают представление, что и разработка и испытания подобной ракеты - задача на грани возможного. Необходимо создать целый набор радиационно-стойкого навигационного и управляющего оборудования, испытать это все довольно комплексным образом (радиация, температура, вибрации - и все это на статистику). Летные испытания с работающим реактором в любой момент могут превратиться в радиационную катастрофу с выбросом от сотен террабеккерелей до единиц петабеккерелей. Даже без катастрофических ситуаций весьма вероятная разгерметизация отдельных твэлов и выброс радионуклидов.
    Из за всех этих сложностей американцы отказались от ракеты с ядерным двигателем SLAM в 1964 г.

    Конечно, в России до сих пор есть Новоземельский полигон на котором можно проводить такие испытания, однако это будет противоречить духу договора о запрещении испытаний ядерного оружия в трех средах (запрещение вводилось с целью недопущения планомерного загрязнения атмосферы и океана радинуклидами).

    Наконец, интересно, кто в РФ мог бы заниматься разработкой подобного реактора. Традиционно изначально высокотемпературными реакторами занимался Курчатовский институт (общее проектирование и расчеты), Обнинский ФЭИ (экспериментальная отработка и топливо), НИИ "Луч" в Подольске (топливо и технологии материалов). Позже к проектированию подобных машин подключается коллектив НИКИЭТ (например реакторы ИГР и ИВГ - прообразы активной зоны ядерного ракетного двигателя РД-0410). Сегодня НИКИЭТ обладает коллективом конструкторов, которые выполняют работы по проектированию реакторов (высокотемпературный газоохлаждаемый РУГК , быстрые реакторы МБИР , ), а ФЭИ и "Луч" продолжают заниматься сопутствующими расчетами и технологиями соотвественно. Курчатовский институт же в последние десятилетия больше перешел к теории ядерных реакторов.

    Резюмируя, можно сказать, что создание крылатой ракеты с воздушным реактивным двигателеям с ЯЭУ является в целом выполнимой задачей, но одновременно крайне дорогой и сложной, требующей значимой мобилизации людских и финансовых ресурсов, как мне кажется в большей степени, чем все остальные озвученные проекты ("Сармат", "Кинжал", "Статус-6", "Авангард"). Очень странно, что эта мобилизация не оставила ни малейшего следа. А главное, совершенно непонятно, в чем польза от получения подобных образцов вооружений (на фоне имеющихся носителей), и как они могут перевесить многочисленные минусы - вопросы радиционной безопасности, дороговизны, несовместимости с договорами о сокращении стратегических вооружений.

    Малогабаритный реактор разрабатывается с 2010 года, об этом докладывал Кириенко в Госдуме. Предполагалось, что его установят на космический аппарат с ЭРД для полетов к Луне и Марсу и испытают на орбите в этом году.
    Очевидно, что для крылатых ракет и подводных лодок используется аналогичное устройство.

    Да, ставить атомный движок можно, и успешные 5 минутные испытания 500 мегаватного движка, сделанные в штатах много лет назад для крылатой ракеты с рам джетом для скорости 3 маха это, в общем-то, это подтвердили (проект Плуто). Стендовые испытания, понятно (движок "обдували" подготовленным воздухом нужного давления/температуры). Только вот зачем? Существующих (и проектируемых) балличтических ракет достаточно для ядерного паритета. Зачем создавать потенциально более опасное (для "своих") в использовании (и тестировании) оружие? Даже в проекте Плуто подразумевалось, что над своей территорией такая ракета летит на значительной высоте, снижаясь на под-радарные высоты только близко к территории противника. Не очень хорошо находиться рядом с незащищенным 500 мегаватным воздушно охлаждаемым урановым реактором про температуре материалов более 1300 цельсиев. Правда, упомянутые ракеты (если они действительно разрабатываются) будут меньшей мощности чем Плутон (Slam).
    Ролик-анимация 2007 г., выданный в презентации Путина за показ новейшей крылатой ракеты с атомной энергетической установкой.

    Возможно, все это подготовка к северо корейскому варианту шантажа. Мы перестанем разрабатывать наше опасное оружие - а вы с нас снимаете санкции.
    Что за неделя - китайский босс пробивает пожизненное правление, российский грозит всему миру.

6-го августа 1945 первое ядерное оружие было использовано против японского города Хиросима. Три дня спустя город Нагасаки был подвергнут второму удару, и в настоящее время - последнему в истории человечества. Эти бомбежки попытались оправдать тем, что они прекратили войну с Японией и предотвратили дальнейшие потери миллионов жизней. В общей сложности, две бомбы убили приблизительно 240,000 человек и провозгласили начало новой, атомной эры. С 1945 года до краха Советского Союза в 1991, мир перенес холодную войну и постоянное ожидание возможного ядерного удара между Соединенными Штатами и Советским Союзом. В это время стороны построили тысячи единиц ядерного оружия, от маленьких бомб и крылатых ракет, к крупным межконтинентальным баллистическим боеголовкам (ICBM) и Морских баллистических ракет (SLBM). Великобритания, Франция и Китай добавили к этому запасу вооружения свои собственные ядерные арсеналы. Сегодня, страх перед ядерным уничтожением значительно меньше, чем в 1970-х, но несколько стран все еще обладают большим арсеналом этого разрушительного оружия.

Несмотря на соглашения, нацеленные на ограничение числа ракет, ядерные державы продолжают развивать и улучшать их запасы и способы доставки. Успехи в разработке систем противоракетной защиты заставил некоторые страны увеличивать развитие новых и более эффективных ракет. Появилась угроза новой гонки вооружений между мировыми супердержавами. Этот список содержит десять самых разрушительных ядерных ракетных систем, находящихся в настоящее время на обслуживании в мире. Точность, диапазон, число боеголовок, мощность боеголовки и подвижность - факторы, которые делают эти системы настолько разрушительными и опасными. Этот список представлен без определенного порядка, потому что эти ядерные ракеты не всегда разделяют ту же самую задачу или цель. Одна ракета может быть разработана, чтобы разрушить город, в то время как другой тип может быть разработан, чтобы разрушить вражеские ракетные бункеры. Кроме того, этот список не включает ракеты, в настоящее время испытываемые, или не официально развернутые. Таким образом, ракетные системы Agni-V в Индии и JL-2 в Китае, тестируемые шаг за шагом и готовые к эксплуатации в этом году, не включены. Иерихон III Израиля также не учтен, поскольку об этой ракете вообще мало что известно. Важно иметь в виду, читая этот список, что размер бомб Хиросимы и Нагасаки был эквивалентен 16 килотоннам (x1000) и 21 килотонне TNT соответственно.

M51, Франция

После Соединенных Штатов и России, Франция развертывает третий по величине ядерный арсенал в мире. В дополнение к ядерным бомбам и крылатым ракетам, Франция полагается на свои SLBM, как основное ядерное средство устрашения. Ракета M51 - самый современный компонент. Она поступила в эксплуатацию в 2010 и в настоящее время устанавливается на классе субмарин Triomphant. Ракета имеет диапазон приблизительно 10,000 км и способна к переносу 6 - 10 боеголовок на 100 кт. Круговое вероятное отклонение (CEP) ракеты отмечено между 150 и 200 метрами. Это значит, что у боеголовки есть 50%-я вероятность нанесения удара в пределах 150-200 метров от цели. M51 оснащена множеством систем, которые существенно усложняют попытки перехвата боеголовок.

DF-31/31A, Китай

Dong Feng 31 является дорожно-мобильной и бункерной межконтинентальной системой серии МБР, развернутой Китаем с 2006. Оригинальная модель этой ракеты несла большую боеголовку на 1 мегатонну и имела диапазон 8,000 км. Вероятное отклонение ракеты - 300 м. Улучшенный 31 А имеет три боеголовки на 150 кт и способен преодолеть расстояние в 11,000 км, с вероятным отклонением в 150 м. Дополнительный факт, что эти ракеты могут быть перемещены и запущены с мобильного ракето-носителя, что делает их еще более опасными.

Тополь-М, Россия

Известный как SS-27 по классификации НАТО, Тополь-М был введен в использование Россией в 1997 году. Межконтинентальная ракета базируется в бункерах, но несколько Тополей также мобильны. В настоящее время ракета вооружена единственной боеголовкой на 800 кт, но может быть оборудована максимум шестью боеголовками и ложными целями. С максимальной скоростью 7.3 км в секунду, относительно плоской траекторией полета и вероятным отклонением приблизительно в 200 м, Тополь-М - очень эффективная ядерная ракета, которую трудно остановить в полете. Трудность прослеживания мобильных единиц делает его более эффективной системой оружия, достойной этого списка.

РС-24 Ярс, Россия

Планы Администрации Буша развить сеть противоракетной обороны в Восточной Европе разозлили лидеров в Кремле. Несмотря на заявление, что экран для защиты от внешних ударных воздействий предназначается не против России, российские лидеры рассмотрели его, как угрозу собственной безопасности и решили разработать новую баллистическую ракету. Результатом было развитие РС-24 Ярс. Эта ракета тесно связана с Тополь-М, но доставляет четыре боеголовки на 150-300 килотонн и имеет отклонение в 50 м. Обладая многими особенностями Тополя, Ярс может также изменить направление в полете и несет ложные цели, что делает перехват системой противоракетной обороны чрезвычайно трудным.

LGM-30G Minuteman III, США

Это единственная наземная МБР, развернутая США. Впервые развернутый в 1970, LGM-30G Minuteman III должен был быть заменен на MX Peacekeeper. Та программа была отменена, и Пентагон вместо этого потратил $7 миллиардов на обновление и модернизацию существующих 450 Активных систем LGM-30G за прошлое десятилетие. Со скоростью почти 8 км/с и отклонением менее чем 200 м (точное число строго засекречено) старый Minuteman остается грозным ядерным оружием. Первоначально эта ракета доставляла три маленьких боеголовки. Сегодня же, используется единственная боеголовка в 300-475 кт.

РСМ 56 Булава, Россия

Морская баллистическая ракета РСМ 56 Булава находится на вооружении у России. С точки зрения морских ракет Советский Союз и Россия несколько отстали от Соединенных Штатов в эффективности работы и способностях. Чтобы исправить этот недочет, была создана Булава - более свежее дополнение к российскому подводному арсеналу. Ракета была разработана для новой субмарины Борей-класса. После многочисленных неудач во время фазы тестирования, Россия приняла ракету на службу в 2013. Булава в настоящее время оснащается шестью боеголовками на 150 кт, хотя в сообщениях говорится, что она может нести целых 10. Как и большинство современных баллистических ракет, РСМ 56 несет несколько ложных целей, чтобы повысить жизнеспособность перед лицом системы противоракетной обороны. Диапазон составляет приблизительно 8,000 км при полной загрузке, с примерной вероятности отклонения в 300-350 метров.

Р-29РМУ2 Лайнер, Россия

Новейшая разработка в российском вооружении, Лайнер был введен в эксплуатацию с 2014. Ракета - эффективно обновленная версия предыдущей российской БРПЛ (Синева Р-29РМУ2), разработанная, чтобы восполнить проблемы и некоторые недочеты Булавы. Лайнер имеет диапазон 11,000 км и может нести максимум двенадцать боеголовок по 100 кт каждая. Груз боеголовки может быть уменьшен и заменен ложными целями, чтобы улучшить жизнеспособность. Отклонение боеголовки держится в секрете, но, вероятно, схоже с 350 метрами Булавы.

UGM-133 Trident II, США

Текущая БРПЛ американских и британских подводных сил - Трайдент II. Ракета была введена в эксплуатацию с 1990 и была обновлена и модернизирована с тех пор. Полностью оборудованный, Трайдент может нести 14 боеголовок на борту. Позже это число уменьшили, и ракета в настоящее время доставляет 4-5 боеголовок на 475 кт. Максимальный диапазон зависит от груза боеголовок и варьируется между 7800 и 11,000 км. ВМС США потребовали вероятность отклонения не более 120 метров, чтобы ракета была принята на службу. Многочисленные отчеты и военные журналы часто заявляют, что на самом деле отклонение Трайдента превысило это требование на довольно значительный показатель.

DF-5/5A, Китай

По сравнению с другими ракетами в этом списке, китайский DF-5/5A можно считать серой рабочей лошадкой. Ракета не выделяется ни внешностью, ни сложностью, но при этом способна выполнить любую поставленную задачу. DF-5 поступила в эксплуатацию в 1981, как сообщение любым потенциальным врагам, что Китай не планирует превентивных ударов, но накажет любого, кто решится напасть на него. Эта МБР может нести огромную боеголовку на 5 мт и имеет диапазон более чем 12,000 км. У DF-5 отклонение приблизительно в 1 км, что означает, что у ракеты одна цель – уничтожать города. Размер боеголовки, отклонение и факт, что на её полную подготовку к запуску требуется всего час, все это означают, что DF-5 - карательное оружие, предназначенное для наказания любых потенциальных нападающих. Версия 5A имеет увеличенный диапазон, улучшение отклонения на 300 м и способность нести несколько боеголовок.

Р-36М2 «Воевода»

Р-36М2 «Воевода» - ракета, которую на Западе называют не иначе, как Сатана и на это есть весомые причины. Впервые развернутый в 1974, разработанный в Днепропетровске комплекс Р-36 прошел с тех пор много изменений, включая перенос боеголовки. Последняя модификация этой ракеты, Р-36M2 может нести десять боеголовок на 750 кт и имеет диапазон приблизительно 11,000 км. С максимальной скоростью почти 8 км/с и вероятным отклонением в 220 м, Сатана - оружие, которое вызвало большое беспокойство американских военных планировщиков. Беспокойства было бы гораздо больше, если бы советским планировщикам дали зеленый свет, чтобы развернуть одну версию этой ракеты, у которой должно было быть 38 боеголовок на 250 кт. Россия планирует снять с использования все эти ракеты к 2019.


В продолжение, посетите подборку самого мощного оружия в истории, где собраны не только ракеты.