Системы фотовспышек TTL, ITTL, A-TTL, E-TTL. Что такое TTL замер и зачем он нужен

Почему возникает и как избежать эффекта «красных глаз»?

«Красные глаза» появляются в случае отражения света вспышки от кровеносных сосудов расположенных на глазном дне. Эффект возникает из-за расширившихся в темноте зрачков. Принцип работы режима уменьшения эффекта «красных глаз» заключается в дополнительном освещении глаз перед основным импульсом. Зрачок сужается, что предотвращает появление эффекта. Иногда стандартного освещения, которое дает режим уменьшения эффекта «красных глаз» недостаточно, тогда «красные глаза» на фотографии остаются. Чтобы быть гарантированно защищенным от появления этого эффекта рекомендуется, чтобы модель в течение приблизительно 20-30сек. смотрела на горящую лампочку или открытое окно. Используя внешнюю вспышку рекомендуется выносить ее дальше от оптической оси объектива или работать с отраженным светом, направив вспышку в потолок или стену.

Что такое и когда нужна высокоскоростная синхронизация со вспышкой?

Синхронизация на коротких выдержках (короче 1/300сек.) необходима при съемке портретов на ярком солнце. Для разных систем фотоаппаратов она получила различные названия: режим FP (Canon, Nikon), HSS (Minolta). Т.е. высокоскоростная синхронизация позволяет избежать переэкспонирования кадра, одновременно работая с высокочувствительной пленкой, открыв диафрагму и подсвечивая тени вспышкой.

Что такое и чем отличаются TTL, A-TTL, E-TTL и E-TTL II?

TTL (Through-The-Lens) – система измерения света через объектив, в том числе и света вспышки. В момент экспонирования свет, отраженный от объекта съемки, проходит сквозь объектив и, отразившись от пленки, попадает на датчик. Датчик, направленный на пленку, измеряет количество света и посылает информацию в центральный процессор. По достижении оптимальной экспозиции центральный процессор прерывает импульс вспышки и закрывает затвор. Принципиальная схема работы системы TTL со вспышкой приведена ниже.

A-TTL (Advanced Through-The-Lens) – передовая система измерения света через объектив. Используя систему измерения света вспышки A-TTL в фотоаппаратах, работающих в программном режиме, рабочее значение диафрагмы вспышки устанавливается на основании сравнения двух измерений. Во-первых, измеряется окружающий свет и устанавливается значение диафрагмы для него. Затем вспышка делает несколько инфракрасных импульсов для измерения расстояния до объекта съемки. В соответствии с расстоянием до объекта вычисляется еще одно значение диафрагмы. После сравнения двух полученных значений устанавливается рабочее значение диафрагмы.

E-TTL (Evaluative TTL) – улучшенная система измерения света через объектив. Для измерения света в этом режиме фотоаппарат использует многозонный датчик, связанный с фокусировочными точками, тот же что используется и при измерении постоянного освещёния. Перед основным импульсом вспышка делает предварительный, практически невидимый для глаза импульс, по которому вычисляется экспозиция. Также измеряется окружающий свет. После чего сравниваются результаты измерений, и вычисляется оптимальная экспозиция.

E-TTL II - система которая помимо работы по методу E-TTL учитывает расстояние от фотокамеры до объекта съёмки, на который сфокусирован объектив. Информация о дистанции позволяет более точно скорректировать мощность импульса. Система E-TTL II работает только в том случае, если используется объектив способный сообщать камере информацию о дистанции съёмки.


Почти все накамерные фотовспышки являются системами TTL , то есть во всех случаях измеряется и оценивается количество света, прошедшее через объектив.

Система TTL

Стандартная система TTL действует следующим образом:

При срабатывании затвора (открытии полной площади кадрового окна) зажигается вспышка. Flash-TTL сенсор 2 на рис.1 в аппарате улавливает свет, прошедший через объектив и отраженный от пленки (путь света указан зелёной линией) и передаёт в процессор камеры который обрабатывает информацию о его количестве, в момент достижения правильной, по мнению аппарата, экспозиции процессор камеры передаёт во вспышку сигнал "достаточно" и IGBT транзистор практически мгновенно прекращает горение разряда в лампе. При этом неиспользованная энергия конденсатора вспышки остается в полной сохранности и время и энергия необходимые для перезарядки емкости существенно сокращаются.

Некоторые недостатки заключаются в том, что из-за абсолютно разных условий съемки и разных отражающих свойств объектов правильная экспозиции в некоторых случаях практически невозможна. Например, когда на пути между камерой и объектом съёмки внезапно возникает обьект с высокой отражающей способностью. Обычно такая система расчитана на то, что отражающие способности сцены близки к отражающей способности стандартной ). Не трудно представить себе ситуацию, которая серьезно отличается от подобной. Скажем светлые объекты (стена, бумага, светлый фон), занимающие бОльшую площадь кадра отражают света значительно больше, чем 18%. Доверяя автоматике на 100% в такой ситуации мы получим недодержку приблительнов 2 ступени. Хотя справедливости ради нужно заметить, что ситуации эти вообщем-то известны и легко исключаемы в бытовой съемке. В примере чуть выше необходимо просто установить поправку экспозиции. Навыки легко достигаются увеличением опыта съёмок.

Рис 1 Оптические пути системы экспонометрии и автофокусировки фотокамер Nikon

1 - датчик автофокуса, 2 - датчик вспышечного TTL, 3 - главный экспонометрический датчик камеры.

Система 3D Multi Sensor Ballanced Fill-In Flash

Наиболее совершенный режим работы вспышек Никон. Эта система принципиально отличается от предыдущих. Кратко механизм работы.

Сразу после поднятия зеркальца, перед тем как начнется открывание затвора, вспышка излучает серию быстрых тестовых предвспышек, которые, отражаясь от закрытых шторок затвора, улавливаются системой TTL Multi Sensor (5-сенсорная система) камеры. Более того, информация о удаленности объекта передается от объектива серии D и обрабатывается камерой вместе с информацией системы TTL. Это автоматически вносит коррективы мощности вспышки. После этого открывается затвор и происходит заранее рассчитанный импульс вспышки.
Эта система практически исключает ошибки кромеуказанных выше (возникновение предметов с высокой отражающей способностью на пути камера-объект съёмки). Но фото на фоне отражающего материала, съемка при недостаточном основном освещении объекта на фоне пейзажа, окна, заката, источника света (контровое освещение) получаются весьма удачно.

Система A-TTL

Система, применяемая фирмой Кэнон, A-TTL, помимо стандартного TTL замера учитывает также расстояние до объекта съемки (подобно Система 3D Multi Sensor Ballanced Fill-In Flash от Nikon).

Сисета E-TTL (Evaluative-Through-The-Lens) auto flash control

В отличие от TTL, A-TTL да и 3D автоматических систем вспышек, которые используют специальный многозонный сенсор для определения экспозиции, система E-TTL использует нормальный замер через систему экспонометрии камеры и автоматически определяет экспозицию вспышки.


А - режим работы вспышки

Не TTL автоматическая работа вспышки предполагает установку значения диафрагмы и чувствительности пленки на самой вспышке. Отраженный во время свечения вспышки свет улавливается сенсором на корпусе вспышки, который определяет достижение правильной экспозиции и выключает вспышку, ориентируясь на установленную чувствительность пленки и диафрагму.

Ручной режим работы фотовспышки

Самая простая система вспышек -ручное управление - не предполагает какого либо автоматизма в работе. Необходимая для правильной экспозиции диафрагма определяется в зависимости от расстояния до объекта и чувствительности используемой пленки, с помощью таблицы на задней панели вспышки, с помощью формулы или с помощью автоматического (которым оснащены практически все современные накамерные вспышки начиная от среднего класса) калькулятора с дисплеем.

При использовании стандартного TTL замера вспышки камера использует обычный режим замера экспозиции, используя встроенную память камеры. TTL замер вспышки измеряет мощность вспышки света, отраженной от предмета. Эту информацию камера получает через объектив. В таком случае, если вы используете защитный или любой другой фильтр, потеря света, вызванная наличием дополнительного стекла, будет учтена. TTL изменяет экспозицию вспышки благодаря использованию специального датчика, который измеряет мощность вспышки, отраженной от поверхности датчика изображения во время её работы. Данный TTL замер не использует предварительную вспышку для расчета экспозиции.

Автоматический TTL-замер

В автоматическом режиме TTL-замера, камера выполняет те же функции, что и в режиме TTL замера. То есть, камера использует информацию о количестве света, определенного специальными датчиками. Кроме того, в автоматическом режиме замера, вспышка так же использует предварительный импульс света, помогающий в расчете соответствующей диафрагмы в зависимости от расстояния до объекта, которое должен пройти свет, что бы осветить его. Этот импульс света включается при половинном зажатии кнопки спуска затвора. Основная вспышка включится когда кнопка будет нажата полностью. Кроме того, если вы установили камеру в программный режим и используете замер A-TTL , камера сравнивает и оценивает информацию со стандартной системы замера экспозиции и автоматического TTL, а затем выбирает большее значение диафрагма, для обеспечения более точной экспозиции и увеличения резкости и глубины резкости.

Оценочный TTL замер

Оценочный TTL замер использует другую технологию для определения необходимых настроек. При использовании замера E-TTL, камера активирует предварительную вспышку, которая отличается от тех импульсов, которые используются в режиме A-TTL. Вспышка в оценочном режиме замера TL активируется непосредственно перед открытием затвора (не тогда, когда кнопка спуска затвора нажата наполовину, как в A-TTL). Таким образом, значения экспозиции рассчитывается за долю секунды до основной вспышки, а не во время измерения окружающего света. Кроме того, информация от предварительной вспышки будет проанализирована на основе датчика TTL, а не внешнего датчика на вспышке. Это делает режим E-TTL более точным. Человеческий взгляд может даже не уловить импульс света от предварительной вспышки E-TTL, так как он запускается чрезвычайно быстро.

Заключение

Система измерения TTL стала большой находкой для фотографов, этот режим способен невероятно точно и быстро определить необходимую мощность света вспышки. Теперь, в эпоху цифровой фотографии, вы кроме всего прочего, можете сразу же посмотреть на получившийся результат, и в случае необходимости сделать некоторую корректировку настроек и попробовать сфотографировать еще раз. Если снимок переэкспонирован (или недоэкспонирован) вы можете перенастроить вспышку и продолжить работу. Если вы научитесь так же понимать различия между режимами TTL замера, ваша работа станет более продуктивной и творческой. Умение ориентироваться в разных настройках вспышки позволяет создавать более качественные фотографии.

Дополнив арсенал специального снаряжения одной-двумя вспышками, можно существенно расширить творческие возможности своей фотокамеры. В этой публикации собраны наиболее важные сведения о нюансах использования различных функций вспышки и некоторые советы по их применению на практике.

Техника

Производителей, выпускающих вспышки для фотоаппаратов, достаточно много. Есть модели, предназначенные для установки только в горячий башмак, есть более массивные варианты - исключительно для студийной съемки. Стоит более подробно остановиться на первой группе, поскольку такие вспышки в умелых руках позволяют эффективно контролировать множество функций современных камер.

Главное – подобрать модель вспышки, соответствующую конкретному фотоаппарату, чтобы установить ее на специальный горячий башмак. К примеру, Canon предлагает линейку оригинальных вспышек Speedlite EX, а Nikon - серию Speedlight SB. Кроме того, существует понятие «ведущей» или «топовой» вспышки. Такая модель способна контролировать работу остальных (дополнительных) моделей, управляя ими.

Для Canon «ведущими» являются вспышки 580EX (снята с производства) и 580EX II.
Для Nikon - SB-800, SB-700, SB-900.

Стоит отметить, что ассортимент вспышек у этих лидирующих компаний достаточно широк, но только топовые модели выступают в качестве ведущих. Вспышки младшего уровня, например, Canon 430EX II и Nikon SB-600, можно использовать на беспроводном управлении лишь как ведомые.

Выпускаются фотокамеры со встроенной вспышкой, способной управлять внешними, например, модели Nikon D700 и Canon EOS 7D. Это удобно, особенно, если внешняя вспышка уже есть. Благодаря такой функции ее можно успешно снять с горячего башмака и продолжить управление на расстоянии. Чтобы узнать, предусмотрена ли для камеры возможность эксплуатации встроенной вспышки в качестве ведущей, достаточно изучить инструкцию.

Контроль экспозиции

Существует три метода управления экспозицией :
1. Изменение параметров .
2. Изменение параметров .
3. Изменение значения .

Вспышка позволяет добавить четвертый способ – теперь можно контролировать экспозицию, регулируя персональное дополнительное освещение. Это удобно, поскольку избавляет фотографа от необходимости зависеть от естественного света на месте съемки. Конечно, никто не запрещает использовать всевозможные экраны, отражатели и рассеиватели, но это уже совершенно другая история.

Основные функции современных вспышек будут рассматриваться на примере моделей Canon Speedlite 580EX II и Nikon Speedlight SB-900. Подробное руководство по их использованию представлено в инструкции, поэтому далее речь пойдет только о ключевых возможностях.

TTL – управление вспышкой

Обозначение TTL означает «через объектив». Эта система измерения реализована практически в каждой цифровой фотокамере. Если говорить о конкретных производителях, то Canon предлагает алгоритм под названием E-TTL, а Nikon – і-TTL. Принцип их действия аналогичен: специальные датчики, встроенные в камеру, измеряют показатели условий конкретного места съемки, например, параметры освещения, цветности и прочие. Происходит этот процесс именно через объектив.

На основании обработки полученной информации фотоаппарат «сообщает» свои выводы фотографу, предостерегая его о том, что сцена слишком затемненная или светлая для конкретной комбинации параметров выдержки, диафрагмы и ISO. Если используется автоматический режим, камера самостоятельно вносит необходимые коррективы. При ручном режиме («М») это предстоит сделать фотографу.

Вспышка, поддерживающая TTL, тоже получает сведения об освещенности сцены. Анализируя эти данные, она рассчитывает требуемую мощность светового импульса. Этот показатель можно доверить автоматическому режиму, но можно регулировать и вручную. Даже в автоматическом режиме владелец может настроить вспышку желаемым образом, исходя из результатов TTL-измерения. Это и есть компенсация экспозиции непосредственно с помощью вспышки.

Компенсировать экспозицию вспышки позволяют элементы управления, идентичные реализованным в системе фотокамеры. Величину экспозиции (EV) можно отрегулировать как для встроенной, так и для внешней TTL-совместимой вспышки.

Фотограф получает возможность контролировать вспышку с любого места с помощью стандартной шкалы экспозиции из 5 ступеней. Можно установить параметры равные величине (EV), можно использовать значение выше или ниже.

Несомненно, функция компенсации экспозиции вспышки с TTL-замером достаточно удобна, отличный способ быстро и очень точно сбалансировать соотношение естественного освещения и света от вспышки в конкретных условиях съемки. Вариантов множество, но главный ориентир – качественное изображение, необходимое фотографу. Например, можно настроить компенсацию вспышки на 2/3 EV, заполнив желаемым образом тени, не затронув при этом тона и даже полутона.

Вспышка может послужить и основным источником света, это целесообразно, когда ее мощность явно превышает показатели естественного освещения, либо наблюдается соотношение 50 на 50. Словом, ориентируясь на сюжет, можно настроить вспышку требуемым образом и сделать кадр более интересным.

Брекетинг экспозиции

Принцип брекетинга экспозиции вспышки (FEB) практически не отличается от подобной функции в камере (AEB). Режим позволяет пользователю выбрать предпочтительный интервал изменения мощности, например, 1/2, 1/3 или даже целую ступень. Если поэкспериментировать, можно легко убедиться, что снимки с разным освещением от вспышки существенно отличаются.

Большая часть современных фотографов не представляют своей работы без системы Canon E-TTL II, которая по праву считается практически совершенной. Однако, до 2004 года владельцы камер Canon были практически безоружны - ни одна из предыдущих систем замера экспозиции полноценно не считала расстояние до объекта съемки как значимую величину. В этой статье эволюция систем Canon от TTL до E-TTL II.

Электронная вспышка прошла длинный путь с тех пор как Гарольд "Doc" Эджертон, американский исследователь и изобретатель, сделал фотосъемку с электрической вспышкой реальностью в 1931 году. Спустя 80 лет, основной принцип электронной вспышки остается таким же - вы заряжаете конденсатор электричеством, а затем в очень короткий миг выпускаете всю энергию в один яркий пучок из лампы вспышки - стеклянной трубки, наполненной инертными газами.

Весь накопленный свет выходит мгновенно, поэтому основной формой его контроля у фотографа является длительность импульса. В более старых вспышках требовалось вычислить расстояние до объекта, а затем установить время длительность вспышки самостоятельно, что приводило к различным ошибкам и громоздким вычислениям. В современных вспышках это процесс полностью автоматизирован за счет использования электроники управляемой компьютером.

Управление экспозицией вспышки Canon.

В обычных условиях фотографу доступны два основных пути, по которым можно контролировать уровень света, поступающего в камеру. Во-первых, вы можете настроить скорость затвора, которая влияет на продолжительность экспозиции, так как окружающий свет практически постоянен в этом контексте. Во-вторых, вы можете регулировать диафрагму объектива, которая регулирует количество света, попадающего в объектив. Добавление в систему вспышки приводит к еще одному фактору, который нужно регулировать, чтобы получить правильно экспонированный кадр. Как Canon решил эту задачу?

Система Canon TTL

Стандартная система TTL работает по следующему принципу:

Фотоаппарат и вспышка не определяют, сколько понадобится света для достижения нужной экспозиции. Вспышка срабатывает при срабатывании затвора. Специальный сенсор в аппарате улавливает уровень света, прошедшего через объектив и отраженный от пленки, и замеряет его, и как только камера решает, что уровень достаточный для правильной экспозиции достигнут - прерыватель во вспышке срабатывает, и вспышка Canon моментально прекращает импульс.

При этом недовыпущенная энергия конденсатора вспышки сохраняется до момента следующего импульса, что значительно сокращает время перезарядки. Этот момент упущен в технологии некоторых старых вспышек, что сказывается на их энергоемкости и времени зарядки. В чем основной недостаток системы TTL? В том, что условия съемки никогда не бывают одинаковыми и что отражающие свойства объектов разнятся, а это приводит к невозможности правильной экспозиции. Ведь обычно такая система настроена на то, что отражающие свойства сцены примерно равны отражающим свойствам стандартной серой карты (отражает около 18% света). Логично, что ситуаций с иным светоотражением масса.

Те же светлые объекты (стена, бумага, светлый фон), если они занимают бОльшую площадь кадра, будут отражать намного больше 18% света. В таком случае чисто автоматическая настройка экспозиции приведет к недодержке на 2 ступени. Это лечится установкой поправки экспозиции на необходимое количество ступеней, что приходит с опытом.

Чуть позже Canon исправил систему управления TTL, добавив функцию AIM ("Advanced Integrated Multi-point Control System»), что означает систему управления на основе многоточечной фокусировки. Внедрение этой системы позволяет камере в реальном времени корректировать экспозицию вспышки согласно выбранной точке фокусировки, тем самым увеличивая шансы на получение точной экспозиции вспышки для объектов, смещенных относительно центра кадра.

Canon новой системой AIM хотел сказать, что лучше полагаться на выбор точек фокусировки для съемки со вспышкой, расположенных не в центре. Интересно то, что сам термин Canon ввел в оборот лишь в середине 90-х годов, что не исключает наличие самой системы в более ранних камерах.

Что касается Nikon, то этот бренд улучшил систему TTL замера тем, что включил расчет расстояние до объекта в управление вспышки - это т.н. "3D" система Nikon. Эта система определяет информацию о расстоянии, читая текущее расстояние фокусировки от объектива. Canon не имел системы расчета расстоянии аж до 2004 года, т.е до введения системы E-TTL II. Однако, несмотря на то, что данные о расстоянии ценно, важно также помнить, что они почти бесполезны при использовании вспышки на отражение или с любого рода диффузорами, когда свет от вспышки не падает непосредственно на объект съемки, так как реальное расстояние от вспышки до объекта превышает замеренное объективом расстояние.

Вспышки Canon с поддержкой системы TTL: Все вспышки серии "E", а также 300TL: 160E, 200E, 220EX, 300EZ, 380EX, 420EZ, 420EX, 430EZ, 430EX, 430EX II, 540EZ, 550EX, 580EX, 580EX II, 480EG, MR-14EX, MT-24EX и 300TL. Единственная на сегодня вспышка серии EX, которая не поддерживает TTL - это Canon Speedlite 270EX.

Итак, стандартная TTL-система Canon довольно сносна по качеству и удобству для съемки в большинстве случаев, хотя и не без провалов. Поэтому Canon не остановились в поисках более совершенной системы.

Система Canon A-TTL

Система A-TTL Canon принесла возможность избежать основных ошибок: довольно близкий объект съемки или практически темный задний фон (при съемке в большом зале, например). Мощности светового импульса, отраженного от объекта съемки в этом случае для стандартной системы явно не хватило бы и вспышка выдала бы мощность бОльшую, чем необходимо. Как результат - передержанный передний (т.е. главный) план. Последняя вспышка, в которой был главный режим работы A-TTL - это вспышка Canon Speedlite 540EZ, которая излучает предварительный импульс в инфракрасном диапазоне, который улавливается сенсором на передней части. Он определял расстояние до объекта и нужную экспозицию.

Тот факт, что A-TTL работал только при стандартном (излучателем строго вперед) положении вспышки приводил к тому, что определить предполагаемую мощность в отраженном свете было практически невозможно. Для этого нужно быстро измерить: расстояние до отражающей поверхности и ее свойства отражения, чего вспышка Canon выполнить не в силах. Кроме того, в случае поворота головы вспышки A-TTL отключался.

В более старшей вспышке Canon 430EZ была реализована способность работы системы A-TTL при любом положением излучателя. При "нормальном" положении излучателя вспышка использовала для оценки экспозиции инфракрасный импульс, а в других положениях излучателя вспышка применяла для определения экспозиции импульс самой лампы излучателя.

Система A-TTL совместима со вспышками Canon: Вспышки Canon Speedlite 300EZ, 300TL (только с T90), 420EZ, 430EZ, 540EZ

Система Canon E-TTL (Evaluative-Through-The-Lens)

В отличие от TTL и A-TTL, которые используют специальный многозонный сенсор для определения экспозиции, система E-TTL использует нормальный замер через систему экспонометрии камеры и автоматически определяет экспозицию вспышки.

#### Как работает вспышка Canon в системе E-TTL:

После спуска затвора вспышка Canon вспыхивает пробными импульсами, которые улавливаются системой, связанной с системой замера экспозиции камеры. Полученная таким образом информация о расстоянии до объекта передается в объектив (не всегда), т.е. вспышка имеет все данные для установки мощности основного импульса. После этого и происходит главный импульс вспышки. Система E-TTL позволяет моментально и намного более точно установить нужную экспозицию и ускоряет работу системы AIM (Advanced Integrated Multi-point), которая объединяет процесс замера расстояния и экспозиции к точке фокусировки.

Вспышки Canon с поддержкой E-TTL:

Все вспышки Canon серии EX Speedlite: 220EX, 270EX, 380EX, 420EX, 430EX, 430EX II, 550EX, 580EX, 580EX II, MR-14EX, MT-24EX

Проблемы системы E-TTL

Одной из самых досадных неприятностей от системы E-TTL являются закрытые глаза у людей в кадре. Это происходит по той причине, что свет от предварительной вспышки заставляет человека моргнуть. Усугубляется ситуация использованием синхронизации по второй шторке. Та же проблема у фотографов, снимающих дикую природу - пугливые птицы и звери попросту выпадают из нужной позиции, пока произойдет основной импульс.

Еще одна проблема - съемка в фотостудии с несколькими ведомыми вспышками в оптическом режиме. Кадр будет в большинстве случаев неправильно экспонирован, т.к часть из них могут сработать по предварительному импульсу - немного раньше.

Стоит отметить, что система Canon E-TTL не достаточно описана самим Canon, и не все функции системы E-TTL поддерживаются вспышками с E-TTL, а также с некоторыми камерами. Разработка системы E-TTL II решила некоторые недочеты.

Система Canon E-TTL II

В 2004 году одновременно с цифровой камерой EOS 1D Mark II была представлена новейшая система управления экспозицией - E-TTL II. В ней были выделены 2 преимущества:

  1. Улучшенный алгоритм замера

Во-первых, E-TTL II учитывает все точки замера до и после предварительных импульсов E-TTL. В этих точках определяется уровень освещения и яркости, затем определяется средневзвешенный показатель необходимой мощности импульса. Это делается, чтобы избежать распространенных проблем с E-TTL, когда материалы с высокой отражающей способностью вызывают блики, искажая расчеты вспышки. По умолчанию, E-TTL II использует оценочные алгоритмы для своего замера, но, например, в камере EOS 1D Mark II была реализована функция (CF 14-1), которая позволяла использовать замер экспозиции по центральной зоне.

  1. Учет данных о расстоянии до объекта

Во-вторых, E-TTL II может использовать данные расстояния, когда они доступны. Многие EF объективы содержат датчики вращения, которые могут определять текущее фокусное расстояние. Например, если ваша камера фокусируется на объект удаленный на 4 метра, то объектив отправит эти приблизительные данные фокусного расстояния в систему камеры.

При определенных условиях данные о расстоянии учитываются в расчетах для определения необходимой мощности вспышки. Это особенно полезно, если Вы используете фотографируете без FEL - новая система поможет минимизировать ошибки замера в этих условиях. Canon описывает новую систему как систему замера плоскости фокусировки, а не точек.

Именно 2004 год стал поворотным в индустрии систем замера экспозиции. Ведь до этого момента практически ни одна камера не поддерживала в полной мере учет данных о расстоянии до объекта, в чем так преуспел Nikon. Система Canon E-TTL II стала первой действительно полезной в применении этой информации.

Вспышки Canon с поддержкой E-TTL II:

Все вспышки Canon серии EX: 220EX, 270EX, 380EX, 420EX, 430EX, 430EX II, 550EX, 580EX, 580EX II, MR-14EX, MT-24EX.