Где хранится международный эталон килограмма? История килограмма.

Федеральное агентство по образованию

Государственное общеобразовательное учреждение высшего профессионального образования

СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Приборостроение и телекоммуникации»

РЕФЕРАТ

ЭТАЛОН ДЛИНЫ И МАССЫ

Выполнил:

ст-т гр. Р 54-2

А. Е. Шамова

Проверил:

преподаватель

Красноярск 2007

Эталоном называется средство измерений (комплекс средств измерений), предназначенное для воспроизведения и хранения единицы величины и передачи ее размера другим, менее точным, средствам измерения.

Международные эталоны хранятся в Международном Бюро Мер и Весов, расположенном в Севре – пригороде Парижа. В соответствии с международными соглашениями с их помощью периодически проводятся сличения национальных эталонов разных стран, в том числе взаимные сличения национальных эталонов. Например, национальные эталоны метра и килограмма сличаются один раз в 20-25 лет, а эталоны вольта и Ома – раз в три года.

Эталон единицы длины.

В 1971 г. Национальное собрание Франции приняло длину десятимиллионной части четверти дуги парижского меридиана в качестве единицы длины – метра. В тот период времени во Франции применялся в качестве единицы длины туаз. Соотношение между метром и туазом оказалось равным 1 м = 0,513074 туаза .

Но уже в 1837 г. Французские ученые установили, что в четверти меридиана содержится не 10 млн., а 10 млн. 856 м. Примерно в тот же период времени стало очевидным, что форма и размеры Земли со временем изменяются. Поэтому в 1872 г. по инициативе Петербургской академии наук была создана международная комиссия, решившая не создавать уточненных эталонов метра, а принять в качестве исходной единицы длины метр Архива Франции.

В 1889 г. Был изготовлен 31 эталон метра в виде платиноиридиевого стержня Х-образного поперечного сечения, который, как следует из рассмотрения Рис. 1 вписывается в квадрат .

Длина линейки составляет 102 см. На каждом из ее концов нанесены три штриха на расстоянии 0,5 мм друг от друга. Таким образом, расстояние между средними штрихами равно 1 м.

Погрешность платиноиридиевых штриховых метров составляет. Уже в начале 20 в. эта погрешность оказалась достаточно большой, не удовлетворяющей требованиям измерений длины.

В 1960 г. XI Генеральной конференцией по мерам и весам было принято новое определение метра: метр – длина, равная 1650763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями
и
атома криптона-86.

Криптоновый эталон метра состоит из газоразрядной лампы, наполненной криптоном-86, помещенной в сосуд Дюара с жидким азотом (Рис. 2 ). При подаче электрического напряжения +1500 в лампе образуется свечение возбужденных атомов криптона-86. Капилляр, в котором происходит свечение (с внутренним диаметром около 3 мм), имеет оптический выход на автоматический интерференционный фотоэлектрический компаратор. С помощью интерференционного компаратора определяется расстояние между штрихами, что позволяет найти число длин волн, укладывающихся между средними штрихами линейки (Рис. 1 ). Фактически определяется не все количество длин волн, «помещающихся» в метре, а оценивается разница между измеряемой длиной и эталонной длиной, воспроизводимой газоразрядной лампой. Измерение длины волны и энергетических характеристик свечения производится с помощью спектроинтерферометров.

Погрешность воспроизведения метра, оцениваемая средним квадратическим отклонением результата измерения, с помощью данного эталона существенно уменьшилась по сравнению с погрешностью платиноиридиевого прототипа метра и составила
.

Новый эталон метра.

Повышение точности эталона длины стало реальным при получении возможности распространения абсолютных измерений частоты (в радиочастотном спектре колебаний) на оптический диапазон и разработке высокостабильных лазеров, что позволило уточнить значение скорости света. В 1983 г. XVII Генеральная конференция по мерам и весам приняла новое опреде­ление метра: «Метр - длина пути, проходимого в вакууме светом за 1/299792458 доли секунды (точно)». Данное определение метра принципиально отличается от определения 1960 г.: «криптоновый» метр не был непосредственно связан со временем, новый метр опирается на эталон единицы времени - секунду и известное значение скорости света.

Еще многие годы метрология и техника будут использовать значение скорости света, установленное XVII Ге­неральной конференцией по мерам и весам.

В настоящее время для обеспечения высокой степени стабилизации важ­нейшего параметра лазерного излучения – частоты, широко применяются ге­лий-неоновые лазеры на длине волны излучения
мкм (инфракрасная область спектра) и
мкм (видимая область спектра), стабилизирован­ные соответственно по насыщенному поглощению в метане (Не-Ne/CH 4 ) и молекулярном йоде (Не-Ne/I 2 ).

Лазеры на основе (Не-Ne/CH 4 ) по воспроизводимости частоты прибли­жаются к цезиевому стандарту, являющемуся основой эталона времени и час­тоты. Работающий в видимом диапазоне спектра Не-Ne/I 2 лазер позволяет реализовать новое определение метра через скорость распростране­ния света в вакууме. Наличие излучения на двух длинах волн ( мкм и мкм) дает возможность с помощью интерферометра обеспечить высо­кую точность измерений. Секунда воспроизводит­ся с помощью цезиевых стандартов частоты в СВЧ диапазоне электромагнит­ных колебаний, а новый метр – в оптическом диапазоне частот, т. е. на несколько порядков выше частот, применяемых в эталоне времени и частоты. Таким образом, необходим «мост», служащий для передачи эталонной частоты цезиевого стандарта в оптическую часть диапазона.

Комплекс аппаратуры для «переноса» измерений частоты в «радиочастотном» эталоне времени на изме­рения частоты высокостабильных лазеров (в оптическом диапазоне) был наз­ван радиооптическим частотным мостом (РОЧМ). РОЧМ позволил по­лучить наивысшую точность измерения скорости света в вакууме и рассматри­вать ее как фундаментальную физическую константу, явился основой создания единого эталона частоты – времени - длины. В этот эталон входят эталон време­ни и частоты, аппаратура РОЧМ, а также новый эталон метра, включающий Не-Ne лазеры, интерферометр сравнения длин волн Не-Ne/CH 4 лазеров и Не-Ne/I 2 лазеров, интерферометр, непосредственно формирующий единицу длины - метр. Этот эталон имеет погрешность воспроизведения в виде средне­го квадратического отклонения результата измерений около , система­тическая составляющая не превышает , т. е. более чем на три порядка меньше погрешности воспроизведения метра с помощью «криптонового» мет­ра.

Эталон единицы массы.

Международный прототип килограмма был утвержден на I Генеральной конференции по мерам и весам в 1889 г. как прототип единицы массы, хотя в тот период еще не существовало четкое разграничение понятий массы и веса, и поэтому часто эталон массы называли эталоном веса.

В состав эталона входят:

Копия международного прототипа килограмма (№ 12), представляющая собой платиноиридиевую гирю в виде прямого цилиндра с закругленными реб­рами диаметром и высотой 39 мм. Прототип килограмма хранится во ВНИИМ им. Д. И. Менделеева (г. Санкт -Петербург) на кварцевой подставке под двумя стеклянными колпаками в стальном сейфе. Эталон хранится при поддержании температуры воздуха в пределах (20±3)°С и относительной влажности 65 %. С целью сохранения эталона с ним сличают два вторичных эталона раз в 10 лет. Они и используются для дальнейшей передачи размера килограмма;

Равноплечие призменные весы на 1 кг № 1 с дистанционным управлением (с целью исключения влияния оператора на температуру окружающей среды), изготовленные фирмой «Рупрехт», и равноплечие современные весы на 1 кг № 2, изготовленные во ВНИИМ им. Д. И. Менделеева. Весы № 1 и № 2 служат для передачи размера единицы массы от прототипа № 12 вторич­ным эталонам.

На Рис. 3 показан эталон килограмма в современном виде. Справа на рисунке представлено вместе с прототипом килограмма № 12 двухконтурное стеклянное защитное устройство.

Погрешность воспроизведения килограмма, вы­раженная средним квадратическим отклонением результата измерений, составляет
.

Со времени создания прототипов килограмма прошло более 100 лет. За истекший период периодически сличали национальные эталоны с международным эталоном. В Табл. 1 приведены результаты лишь двух сличений (они были и позже 1954 г.) эталонов килограмма.

Таблица 1

Новый эталон килограмма

Недавно выяснилось, что Парижский эталон килограмма не совсем точен. Решить эту проблему, т.е. создать новый эталон массы, поможет программа, в которой участвуют ученые из восьми стран. Первые 140 граммов вещества для нового эталона уже существуют. Это сверхчистый кремний, на 99,99% состоящий из изотопа кремния-28.

Через три года такого кремния будет уже 5 кг. Этого хватит, чтобы сделать килограммовый шар, число атомов кремния-28 в котором будет точно известно. И тогда допотопную гирю в парижской Палате мер и весов заменит эталон, не только масса, но и число атомов в котором будут определены с предельной для сегодняшней мировой науки точностью.

Получить новый, действительно точный эталон массы ученые, а особенно физики, мечтали давно. Часть работы выполнена, но впереди еще огромный объем. Дело в том, что в микроэлектронике химически чистый кремний получать в основном научились. Но природный кремний состоит из трех изотопов с разной, естественно, массой атомов - 28 (92%), 29 (5%) и 30 (3%) углеродных единиц. А для эталона массы атомы нужны только одинаковые. Только после получения в России изотопически-чистого кремния в Австралии сделают идеальный гладкий шар. И потом шар будут долго и тщательно проверять в Германии и Франции. Таким образом, впервые появляется возможность уточнить одну из самых фундаментальных химических величин - число Авогадро.

Килогра́мм (обозначение: кг, kg) - единица измерения массы, одна из основных единиц СИ [система единиц/измерений].

На данный момент килограмм - единственная единица СИ, которая определена при помощи предмета, изготовленного людьми. Все остальные единицы теперь определяются с помощью фундаментальных физических свойств и законов.

Эталон был изготовлен в 1889 г. и с тех пор хранится в Международном бюро мер и весов * (расположено в г. Севр близ Парижа) и представляет собой цилиндр диаметром и высотой 39.17 мм из платино-иридиевого сплава (90% платины, 10% иридия). Хранится он под тремя герметичными стеклянными колпаками. Первоначально килограмм определялся как масса одного кубического дециметра (литра) чистой воды при температуре 4°C и стандартном атмосферном давлении на уровне моря.
Были изготовлены также точные официальные копии международного эталона, которые используются как национальные эталоны килограмма. Всего было создано более 80 копий. Копии международного эталона хранятся также и в Российской Федерации, во ВНИИ метрологии им. Менделеева . Примерно раз в 10 лет национальные эталоны сравниваются с международным. Эти сравнения показывают, что точность национальных эталонов составляет примерно 2 мкг. Так как они хранятся в тех же условиях, нет никаких оснований считать, что международный эталон точнее. По разным причинам за сто лет международный эталон теряет 3х10 −8 своей массы. Однако, по определению, масса международного эталона в точности равна одному килограмму. Поэтому любые изменения действительной массы эталона приводят к изменению величины килограмма.

Для устранения этих неточностей в настоящее время рассматриваются различные варианты переопределения килограмма на основе фундаментальных физических законов.

Также с 2003 года международная группа исследователей из 8 стран, в том числе из Германии, Австралии, Италии и Японии, под эгидой Немецкой лаборатории стандартов (German standards laboratory) ведет работы по переопределению килограмма как массы определённого числа атомов изотопа кремния-28. Второй проект, под названием «Электронный килограмм» начат в 2005 г. в (NIST). Руководитель данного проекта Ричард Стайнер утверждает, что над созданием «электронного килограмма» он работает более десяти лет. Учёные под руководством доктора Стайнера создали прибор, который измеряет мощность, необходимую для генерации электромагнитного поля, с помощью которого можно поднять один килограмм массы. С его помощью учёным удалось определить массу в один килограмм с точностью до 99,999995 %, пишут на Википедии .

Ученые приближаются к нефизическому описанию килограмма после открытия того, что металлический эталон, используемый в качестве международного стандарта начал по непонятным причинам терять вес.

Исследователи говорят, что им еще предстоит пройти определенный путь, прежде чем определение будет дано, но в случае успеха это привело бы к принятию нового международного стандарта, используемого для определения килограмма.

Ученые говорят, что именно описание килограмма столь важно, так как он является основной физической единицей весов, от которой все остальные уже вычисляются как производные. Сейчас эквивалент килограмма - это металлический брусок, весом около 2,2 британских фунтов [...] .

Однако в 2007 году было установлено, что эталон начал терять вес, в частности ученые определили, что килограммовый брусок стал весить на 50 микрограмм меньше, нескольких десятков точных копий. То есть, можно сказать, что эталон потерял вес, сопоставимый с весом песчинки. В связи с этим, физики предполагают, что брусок может и дальше терять свой вес.

Кроме того, ученые говорят, что другие основополагающие единицы, такие как ампер, вольт, моль, метр и другие не привязаны к каким-либо физическим ссылкам.

Ранее немецкие специалисты из Национального института метрологии в Брауншвейге сообщили, что будут использовать новую 10-сантиметровую кремниевую сферу в качестве эталона килограмма. По мнению ученых, новый эталон более точен и стабилен, нежели используемый сейчас.

Цель нового проекта заключается в создании более надежного эталона, точность которого измеряется на атомном уровне. Ученые говорят, что атомы кремния для этого проекта подходят идеально, так как они очень стабильны, а их соединения почти не разрушаются в стандартных условиях.

Примечательно, что частично новый кремниевый эталон килограмма был разработан в России. Также в проекте приняли участие ученые из Австралии и Японии. Всего на изготовление кремниевой сферы беспрецедентной точности было потрачено 2 миллиона евро, а процесс ее создания занял чуть меньше 5 лет.

По словам Петера Бекера, руководителя проекта, для создания килограммового эталона физики рассчитали сколько атомов кремния должно находиться в 1 килограмме этого элемента, после чего приступили к «сборке» эталона. Однако Бекер подчеркивает, что и новая сфера не является идеально точной, так как сегодняшняя наука не способна сложить макрообъект в буквальном смысле слова, собирая его по атомам, пишет ZN.UA по материалам CyberSecurity .

* Справка: Что такое Международное бюро мер и весов?

Учреждено в 1875 г., вместе с подписанием Метрической конвенции . Основная задача Бюро заключается в обеспечении существования единой системы измерений во всех странах-участницах этой конвенции.

В МБМВ хранятся международные эталоны основных единиц и выполняются международные метрологические работы, связанные с разработкой и хранением международных эталонов и сличением национальных эталонов с международными и между собой.

В МБМВ также проводятся исследования в области метрологии, направленные на увеличение точности измерений.

В разные годы бюро возглавляли известные европейские ученые: G. Govi (Италия, 1875-1877) , J. Pernet (Швейцария, 1877-1879) , O.-J. Broch (Норвегия, 1879-1889) , J.-R. Benoit (Франция, 1889-1915) , C.-E. Guillaume (Швейцария, 1915-1936) , A. Perard (Франция, 1936-1951) , C. Volet (Швейцария, 1951-1961) , J. Terrien (Франция, 1962-1977) , P. Giacomo (Франция, 1978-1988) , T. J. Quinn(Великобритания, 1988-2003) .

С 2004 года по настоящий момент директором МБМВ является профессор Эндрю Уоллард (A. J. Wallard ), Великобритания. Бюро финансируется странами-участницами Метрической конвенции.

Существует также Главная палата мер и весов , которая была учреждена в 1893 году в Санкт-Петербурге по инициативе Д. И. Менделеева, учёного-хранителя Депо образцовых мер и весов , которое и было преобразовано в Главную палату.

Главная палата мер и весов являлась центральным учреждением Министерства финансов, заведовавшим поверочной частью в Российской империи и подчиненным отделу торговли.

По Положению о мерах и весах 1899 задачей Палаты являлось «сохранение единообразия, верности и взаимного соответствия мер и весов»; по закону 1901 на нее было возложено заведование местными поверочными палатками, временными их отделениями, распределение по тем и другим состоявших при Палате поверителям, командирование их и др., а также решение различных вопросов по метрологии и ведение отчетности по поступлению в казну сборов за клеймение мер и весов. В самой Палате устройство поверочного дела было доведено до возможного научно-технического совершенства.

Сегодня ВНИИМ является одним из крупнейших мировых центров научной и практической метрологии, головной организацией страны по фундаментальным исследованиям в метрологии и главным центром государственных эталонов России. Подчинен Федеральному агентству по техническому регулированию и метрологии.

В июле 1994 года Постановлением Правительства РФ ВНИИМ присвоен статус Государственного научного центра РФ. Как Государственный научный центр РФ ВНИИМ подчинен Министерству образования и науки России и входит в Ассоциацию государственных научных центров, пишут на Википедии .

Наверное, многие читатели помнят телевизионную рекламу одного сотового оператора, в которой появился знаменитый слоган "Скока вешать в граммах?" "Точность никогда не бывает лишней", - резюмировал свой вопрос один из героев ролика . На самом деле, он лукавил - точно отвесить, скажем, 200 граммов чего-либо невозможно. И дело не только в том, что существующие способы взвешивания плохи - просто у людей нет надежного эталона килограмма, а значит, и грамма.

Потребность в разработке стандартов, ориентируясь на которые можно определять значения массы, времени, длины и температуры (а после появления физики еще силы света, силы тока и единицы вещества) возникла у человечества давно. Потребность эта вполне объяснима - для того чтобы строить дороги и дома, путешествовать и торговать, необходимы были неизменные единицы, используя которые два строителя или торговца могли бы понимать, что нарисовано в чертежах друг друга и о каких количествах товара идет речь.

Свои собственные единицы измерения были у каждой цивилизации: например, в Древнем Египте массу измеряли в кантарах и киккарах, в Древней Греции - в талантах и драхмах, а на Руси - в пудах и золотниках. Как любят говорить ученые, при создании каждой из этих единиц люди как бы договаривались , что отныне масса, длина или температура чего-либо будут сравниваться с одной единицей массы, длины или температуры соответственно. Число тех, кто непосредственно участвовал в этих договоренностях, было очень невелико - у двух торговцев из разных концов страны пуды вполне могли отличаться на треть.

Как бы договоренности прекрасно работали до тех пор, пока люди не начали всерьез заниматься наукой и осваивать инженерное дело. Оказалось, что для описания законов природы или создания парового котла приближенных значений недостаточно, особенно если в работе принимают участие люди из разных стран. Осознав этот факт, ученые со всего мира занялись разработкой единых точных стандартов, или эталонов, для основных единиц измерения. 20 мая 1875 года во Франции было подписано соглашение об установлении этих единиц - Метрическая конвенция. Все страны, подписавшие этот документ, обязались использовать в качестве эталонов специально созданные стандарты. Для обеспечения государств-подписантов самыми точными эталонами была создана Международная палата мер и весов (или Международное бюро мер и весов). В задачи этой организации входит регулярное сравнение национальных эталонов между собой и курирование работ по созданию более точных способов измерения.

В России введение метрической системы связано с именем Дмитрия Ивановича Менделеева, создавшего в 1893 году Главную палату мер и весов и вообще немало сделавшего для развития метрологии. Свой интерес к точным измерениям он объяснял так: "Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры". Благодаря усилиям Менделеева, с первого января 1900 года в России наряду с национальными были разрешены к применению метрические меры.

После подписания Метрической конвенции специалисты занялись разработкой единых эталонов метра и килограмма (эти единицы измерения существовали и до 1875 года, однако эталонов, которые бы признавались во всем мире, не существовало). Эталон метра был установлен после знаменитой экспедиции по измерению длины дуги Парижского меридиана и представлял собой линейку из сплава платины и иридия в соотношении 9 к 1, длина которой равнялась одной сорокамиллионной части меридиана. По месту хранения его стали называть "метр архива" или "архивный метр". Эталон килограмма был отлит из того же сплава, и его масса соответствовала массе одного кубического дециметра (литра) чистой воды при температуре 4 градуса Цельсия (когда вода имеет максимальную плотность) и стандартном атмосферном давлении на уровне моря. В 1889 году в ходе первой Генеральной конференции по мерам и весам была принята система мер, основанная на только что изготовленных эталонах метра и килограмма, а также на эталоне секунды. Стандартом секунды стала считаться 1/86400 часть продолжительности средних солнечных суток (позже эталон привязали к тропическому году - секунду приравняли к 1/31556925,9747 его части). Страны, признавшие новую систему мер, получили копии этих эталонов, а прототипы отправились на хранение в Палату мер и весов.

Через некоторое время к этим трем эталонам добавились эталоны канделы (сила света), ампера (сила тока) и кельвина (температура). В 1960 году одиннадцатая Генеральная конференция по мерам и весам приняла систему мер и весов, основанную на использовании этих шести единиц и моля (единица количества вещества - его эталона не существует) - новая система получила название Международная система единиц, или СИ. Казалось бы, на этом история эталонов должна была завершиться, однако, в действительности, она только начиналась.

Все, что может испортиться…

По мере совершенствования технологий измерения стало ясно, что все хранящиеся в Париже эталоны не идеальны. Постепенно ученые приходили к мысли, что за стандарты основных единиц стоит брать не рукотворные предметы, а гораздо более совершенные образцы, уже созданные природой. Так, за стандарт секунды приняли интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0 кельвинов при отсутствии возмущения внешними полями, а за стандарт метра - расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. В отличие от старых, новые стандарты являются атомными или квантовыми, то есть в них "работают" самые "базовые" законы природы.

Постепенно шесть из семи основных единиц СИ получили способы воспроизведения, для которых не нужен уникальный эталон, хранящийся где-то в одном месте. Теоретически, любой ученый, который захочет точно (очень точно) узнать, например, сколько длится секунда, может взять миллиграмм-другой изотопа цезия-133 и отсчитать, когда произойдут 9192631770 периодов излучения (кстати, свои атомные стандарты времени установлены, например, на всех спутниках GPS). "В девушках" остался только килограмм - его эталон все еще пылится в глубоком подвале под Парижем.

Слово "пылится" в предыдущем абзаце вовсе не является стилистическим украшением - пыль на самом деле постепенно скапливается на эталоне килограмма, несмотря на все контрмеры. Достать платино-иридиевый цилиндр и протереть нельзя - во-первых, при извлечении на нем опять же осядет пыль, а во-вторых, протирка или даже обмахивание щеточкой неминуемо приведет к "отскакиванию" нескольких молекул. Иными словами, независимо от того, что делают или не делают с эталоном, его масса со временем изменяется. Долгое время считалось, что эти изменения незначительны, однако проведенная несколько лет назад проверка показала, что за последнее время эталон "похудел" на 50 микрограммов, а это уже внушительные потери.

Моль, кремний и золото

Возможный выход из этого печального положения (за какой-нибудь миллиард лет эталон станет легче на треть) предложили в 2007 году два американских ученых из Технологического института Джорджии. Вместо переменчивого цилиндра они предложили считать стандартом массы куб из углерода, который будет содержать строго определенное количество атомов. Так как масса каждого отдельного атома постоянна, то и масса их совокупности также не будет меняться. Исследователи рассчитали, что куб массой ровно один килограмм будет состоять из 2250 х 28148963 3 атомов (50184513538686668007780750 атомов), а его грань составит 8,11 сантиметра. За три года ученые уточнили некоторые детали и представили свои соображения в статье, препринт которой можно найти на сайте arXiv.org.

Американские физики озаботились проблемой стандарта килограмма и выбрали в качестве "эталонного" элемента углерод неспроста - до этого они занимались уточнением числа Авогадро - одной из фундаментальных констант, определяющей, сколько атомов содержится в одном моле любого вещества. Хотя это число и является одним из самых главных в химии, его точного значения не существует (в числе прочих вопросов ученые, например, решали, четное оно или нет). Число Авогадро подобрано так, чтобы масса моля в граммах равнялась массе молекулы (атома) в атомных единицах массы. Атом углерода имеет массу 12 атомных единиц массы, а значит, масса моля углерода должна составлять12 граммов. Уточнив число Авогадро и приняв его равным 84446886 3 (602214098282748740154456), исследователи смогли рассчитать необходимое число атомов углерода в эталоне.

Не исключено, что новая работа будет рассмотрена на очередной Генеральной конференции по мерам и весам, которая пройдет в 2011 году. Однако у ученых из Джорджии есть конкуренты. Например, в Вашингтонском национальном институте стандартов и технологии очень активно работают над концепцией электронного килограмма. Вкратце суть предлагаемого ими метода такова: эталон определяется через силу тока, которая необходима для создания магнитного поля, способного уравновесить груз в один килограмм. Этот способ очень хорош, так как позволяет добиться высокой точности (он основан на использовании еще одной фундаментальной константы - постоянной Планка), однако сам эксперимент чрезвычайно сложен.

Еще один вариант нового эталона – кремниевая сфера, параметры которой рассчитаны таким образом, что она будет содержать строго определенное количество атомов (этот расчет можно провести, так как ученым известно расстояние между отдельными атомами, а сам процесс производства чистого кремния очень хорошо налажен). Такая сфера даже была создана, но с ней немедленно возникли сложности, напоминающие сложности нынешнего эталона - со временем сфера теряет часть своих атомов и, кроме того, на ней образуется пленка оксида кремния.

Третий подход к созданию эталона предполагает, что он будет каждый раз производиться de novo . Для получения стандарта массы необходимо накапливать ионы висмута и золота до тех пор, пока их суммарный заряд не достигнет определенного значения. Этот метод уже признали неудовлетворительным: он требует слишком много времени, а результаты плохо воспроизводятся. Вообще, с высокой вероятностью, все описанные способы получения нового эталона килограмма, кроме способа, основанного на использовании числа Авогадро, останутся только в памяти историков науки, так как в отличие от остальных, эталон килограмм в виде куба из изотопа углерода-12 основан на прямом использовании одного из фундаментальных атомных понятий.

Пока неясно, станет ли углеродный эталон общепризнанным или же ученые придумают новый, более удобный способ. Но тот факт, что хранящийся в Париже цилиндр, верой и правдой служивший людям 120 лет, скоро отправится на пенсию, сомнений не вызывает.

Что такое килограмм? Детский вопрос! Это же масса литра воды. Чтобы получить его в домашних условиях, достаточно иметь водопроводный кран и литровую банку. Но вот «настоящее и полновесное» эталонное кило в последнее время стремительно теряет в весе.

Увы, всемирный эталон килограмма, как явствует из New York Times, стал жертвой загадочной и продолжительной болезни. Заглянем в анамнез.

В XVIII веке килограмм был определён как масса кубического дециметра воды при температуре её наибольшей плотности (4 o С). Как оказалось, такое определение не вполне конструктивно: нужен очень точный кубический дециметр, совершенно чистая вода и абсолютно правильный термометр.

За дополнительными сведениями о заболевшем обратимся в Книгу Судеб - БСЭ.

«Килограмм, единица массы, одна из семи основных единиц Международной системы единиц (СИ). Он равен массе международного прототипа, хранимого в Международном бюро мер и весов. Прототип в 1799 году был выполнен в виде цилиндрической гири из платины.

Масса прототипа килограмма оказалась приблизительно на 0,028 грамма больше массы одного кубического дециметра воды.

Самый главный на сегодняшний день килограмм - просто кусок железа (фото bipm.org).

В 1889 году было принято существующее определение килограмма и в качестве международного прототипа была утверждена гиря со знаком К („К“ готическое заглавное), изготовленная из платиноиридиевого сплава (10% Ir) и имеющая форму цилиндра диаметром и высотой 39 мм».

Оказывается, сработанный английским ювелиром платиноиридиевый килограмм - единственная основная единица СИ, доблестно хранящая своё определение аж с позапрошлого века. И сама хранящаяся в виде материального артефакта.

Метр, например, поначалу соотнесённый с длиной земной окружности, теперь приравнен к расстоянию, проходимому светом за одну 299792458-ю долю секунды. А собственно секунда - это время, за которое атом цезия совершает 9192631770 колебаний.

Мало того, что эти единицы определены с подобающей квантовой точностью, они ещё могут быть адекватно воспроизведены в любой точке мира. Клонировать килограмм куда сложнее, вдобавок для этого требуется сложная бюрократическая процедура.

Видимо, долгое время такое уникальное положение килограмма всех устраивало, раз не было достаточных побудительных оснований к созданию его скрупулёзной формулы.

Но переменчивый килограмм тянет за собой в дрейфующее плавание и Ватт, и другие смежные единицы измерения.

А в изменчивости килограмма не осталось никаких сомнений, несмотря на все меры предосторожности: эталон хранится под тремя герметичными стеклянными колпаками в сейфе охраняемого замка в окрестностях Парижа, а ключи от сейфа имеют лишь три особо приближенных бюрократа из Международного бюро мер и весов (Bureau International des Poids et Mesures — BIPM).

Килограмм и 6 его приспешников хранятся в постоянно запертом сейфе (фото bipm.org).

Вместе с главным килограммом в сейфе располагаются 6 преемников, а всего за время правления по его образу и подобию было изготовлено более 80 копий.

Для освидетельствования престарелого килограмма, происходящего раз в год, он торжественно извлекается из своего хранилища. И каждый раз обнаруживается микроскопическое уменьшение веса.

Килограмм чахнет. Об этом ясно говорят сравнения с другими обитателями сейфа. Природа болезни загадочна, но все симптомы налицо: за сто лет килограмм теряет около 0,00000003-й части своей драгоценной массы.

А ведь даже похудение всего на 50 микрограмм (меньше веса соляной крупинки) может серьёзно исказить результаты сложных научных вычислений. Не вызывает сомнений необходимость замены уникального килограмма на абстрактный килограмм.

Международная команда исследователей из Германии, Австралии, Италии и Японии под эгидой Немецкой лаборатории стандартов (German standards laboratory) хочет переопределить килограмм как массу определённого числа атомов. В лаборатории сделан совершенно круглый килограммовый шар из чистого кристаллического кремния.

Если точно известно, какие атомы составляют кристалл и на каком расстоянии они находятся друг от друга, то, измерив размер шара, можно вычислить число атомов кремния, его составляющих. Это число и будет определением килограмма.

Для производства шара необходимо было получить изотоп кремния очень высокой степени очистки. Помощь в этом начинании оказала Россия - на старых, ещё советских ядерных оружейных фабриках имеются центрифуги, использовавшиеся для выработки высокообогащённого урана.

Возможно, этот кремниевый шар станет новым килограммом. Но только в виде числа составляющих его атомов (фото nytimes.com).

Полученный шар потребовалось измерить на «круглость». Кристалл был педантично замерен в полумиллионе точек. Вывод: шар - самое круглое творение рук человеческих. Если увеличить шар до размеров Земли, высота Эвереста составит всего четыре метра.

Интригующая особенность шара: совершенно невозможно на глаз определить, покоится он или вращается. Только если на поверхность упадёт пылинка, взгляду будет за что зацепиться.

Хотя число атомов кремния, составляющих уникальный объект, ещё не подсчитано, методика уже вызывает критику из другого лагеря, сплотившего учёных из США, Англии, Франции и Швейцарии.

По их мнению, с сегодняшними технологиями невозможно точно сосчитать число атомов, поэтому килограмм легче и надёжнее вычислить, используя электрическое напряжение. Измерение энергии, дескать, проще подсчёта атомов. Может и проще, но только не на словах.

В работе используется сложный механизм, называемый балансом Ватта. В основу методики положена эквивалентность механической и электрической мощности.

Следует создать электромагнитное поле, поместить в него эталонный килограмм, и замерить параметры эксперимента. Поскольку гравитационное поле постоянно и детерминировано местоположением трёхэтажной установки, через эталонный килограмм можно связать значения механических и электрических величин.

Правда, надо ещё учесть приливно-отливные воздействия, а прочие проявления внешней среды можно исключить, поместив установку в глубокий вакуум.

Кремниевая сфера, созданная в Австралийской Национальной лаборатории измерений (Australia’s National Measurement Laboratory — NML).

Измерив значения длины, времени, электрического тока и сопротивления (а все они могут быть вычислены на основе фундаментальных и инвариантных квантовых явлений) можно квантовым же способом оцифровать и основную единицу - килограмм. Подобным образом была уже определена масса электрона.

О точности изощрённого и окольного способа вычисления килограмма говорить пока рано, учёные поглощены устранением колебаний напряжения в электрических цепях. Однако они уверены, что победа будет за ними, а не за конструкторами кремниевых шаров.

По информации New York Times, секция массы BIMP - инстанция, в конечном счёте, определяющая судьбу килограмма - склоняется к последнему подходу, но сделать окончательный выбор пока что очень сложно. Но выбирать хотят между этим двумя, хотя существуют и другие варианты.

Например, как и всё в нашем мире купли-продажи, пресловутый килограмм может иметь точное ценовое выражение.

Для его исчисления надо узнать количество атомов в килограмме чистого золота. По сегодняшним прикидкам, в таком числе должно быть порядка 25 цифр, но ничего более определённого сказать о нём нельзя.

Cтраница 2


Из сплава платины с иридием в нашей стране изготовлен эталон килограмма, представляющий собой прямой цилиндр диаметром 39 мм и высотой тоже 39 мм.  

В Международной системе единиц (SI) килограмм (эталон килограмма в Севре) принят в качестве единицы массы для того, чтобы исключить эту путаницу.  

Из сплава платины с иридием в нашей стране изготовлен эталон килограмма, представляющий собой прямой цилиндр диаметром 39 мм и высотой тоже 39 мм. Он хранится в Ленинграде, во Всесоюзном научно-исследовательском институте метрологии им.  

Силы: 1 килограмм-силы (кгс) - вес эталона килограмма в месте его хранения (в Севре, где находится Международное бюро мер и весов); 1 кгс - основная единица устаревшей технической системы единиц; 1 тс (тонна силы) № кгс.  

В СССР национальными прототипами являются эталон метра № 28 я эталон килограмма № 12, полученные Россией в 1889 г. от Международного бюро мер и весов. Тогда же были получены эталон метра № 11 и килограмма № 26, которые являются эталонами-копиями. Национальные прототипы и их копии хранятся и воспроизводятся во Всесоюзном научно-исследовательском институте метрологии (ВНИИМ) им.  

Точка / характеризует наивысшую точность, которая достигается при сличениях эталонов килограмма. Кривая 2 имеет минимум при нагрузке, равной 1 кг. Это объясняется тем, что в точке / передача значения единицы массы производится прямым сравнением с эталонами, в то время как при других нагрузках сказываются дополнительно погрешности, связанные с калибровкой гирь, воспроизводящих кратные или дольные значения килограмма. Как известно, с уменьшением предельной нагрузки весов абсолютные значения погрешностей быстро падают. Быстрый рост значений приведенных погрешностей объясняется в значительной мере тем, что при малых нагрузках влияние внешних возмущений и сил трения сказывается в сравнительно большей степени, чем при больших нагрузках.  

Исследования, производимые в этой области, пока еще не позволяют заменить искусственный эталон килограмма естественным, не зависящим от сохранности прототипа.  

Новый эталон метра был изготовлен из устойчивого сплава платины и иридия и вместе с эталоном килограмма (масса 1 000028 куб.  

В 1889 г. иод наблюдением международной комиссии было закончено изготовление 34 эталонов метра и 43 эталонов килограмма. В том же году в Париже на первой международной конференции по мерам и весам были утверждены международные прототипы метра и килограмма.  

В подвалах ИнтернациональногсГбюро весов и мер близ - Парижа хранится эталон из иридистзй платины, признанный всеми как эталон килограмма. Так как литр является единицей измерения объемов жидкостей, более правильно и точно употреблять один миллилитр как одну тысячную часть литра, но не один кубический сантиметр.  

Как бы ни была высока точность, с которой хранилась единица длины при помощи платиноиридие-вого штрихового прототипа метра, этот эталон подвержен изменениям, так как он являлся вещественным, как и эталон килограмма.  

Технохимические весы.| Пружинные весы.  

Единицей массы в СИ является килограмм. Эталон килограмма представляет собой специально изготовленный платиноиридиевый цилиндр, хранящийся в сейфе Международного бюро мер и весов в Севре, под Парижем.  

Единица массы килограмм равна массе международного прототипа килограмма. Эталоном килограмма является платиноиридиевый прототип, принятый на III Генеральной конференции по мерам и весам в 1901 г. и хранящийся в Париже.  

Для измерения силы ее сравнивают с весом определенных тел. Эталоном килограмма служит платино-иридиевыи цилиндр, хранящийся в Международной палате мер и весов в Севре близ Парижа. Вес эталона килограмма с большой точностью приближается к весу 1 дм3 чистой воды при температуре 4 С для географической широты Парижа.