Что первое плюс или деление. Порядок выполнения действий в выражениях без скобок и со скобками

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления - это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 - 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 - 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 - (20 - 7) +15

32 + 9 * (19 - 16)

Будем действовать по правилу. В выражении 43 - (20 - 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 - (20 - 7) +15 =43 - 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 - 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 - 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие - умножение, второе - деление, третье - вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 - 6: 2 * 3 =

18: (11 - 5) + 47=

7 * 3 - (16 + 4)=

Рассуждаем так.

37 + 9 - 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие - деление, второе - умножение. Третье действие должно быть сложение, четвертое - вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие - в скобках, второе - деление, третье - сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие - в скобках, второе - умножение, третье - вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого - вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. - М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. - М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. - М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. - М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. - М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. - М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. - М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Особенно сложны и трудны были в старину действия умножения и деления – особенно последнее.

«Умножение – мое мучение, а с делением – беда», - говорили в старину.

В глубокой древности и почти до восемнадцатого века русские люди в своих вычислениях обходились без умножения и деления: они применяли лишь два арифметических действия - сложение и вычитание, да ещё так называемые «удвоения» и «раздвоение». Сущность русского старинного способа умножения состоит в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам (последовательное раздвоение) при одновременном удвоении другого числа. Если в произведении, например 24∙5, множимое уменьшить в 2 раза («раздвоить»), а множитель увеличить в 2 раза («удвоить»), то произведение не изменится: 24∙5=12∙10=120

Деление множимого продолжают до тех пор, пока в частном не получится 1, одновременно удваивая множитель. Последнее удвоенное число и дает искомый результат. Значит 32∙17=1∙544=544. В предлагаемом примере, все числа делятся на 2 без остатка.

А как быть, если деление на 2 происходит с остатком?

Если множимое не делится на 2, то от него сначала отнимается единица, а затем уже производится деление на 2. Строчки с четными множимыми вычеркиваются, а правые части строчек с нечетными множимыми складываются.

То есть 21∙17=(20+1)∙17=20∙17+1∙17.

Число 17 запомним (первая строка не вычеркивается), а произведение 20∙17 заменим равным ему произведением 10∙34. но произведение 10∙34, в свою очередь, можно заменить равным ему произведением 5∙68, поэтому вторая строка вычеркивается: 5∙68=(4+1) ∙68= 4∙68+68 Число 68 запомним (третья строка не вычеркивается), а произведение 4∙68 заменим ему равным произведением 2 ∙136. Но произведение 2∙136 можно заменить ему равным произведением 1∙272, поэтому четвертая строка вычеркивается. Значит, чтобы вычислить произведение 21∙17, нужно сложить 17.68.272 – правые части именно с нечетными множимыми.

Произведения же с четными множимыми всегда можно заменить с помощью раздвоения множимого и удвоения множителя равными им произведениями. Поэтому такие строчки исключаются из вычисления окончательного произведения.

Шло время. В ходу была одновременно чуть ли не дюжина различных способов умножения и деления – приемы один другого запутаннее, твердо запомнить которые не в силах был человек средних способностей.

В книге В.Беллюстина «Как постепенно дошли люди до настоящей арифметики» (1941г.) изложено 27 способов умножения, причем автор отмечает; «весьма возможно, что есть и еще (способы), скрытые в тайниках, книгохранилищах, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения – «шахматный», «загибанием», «задом наперед», «алмазом» и прочие, а также все способы деления, носившие не менее затейливые наименования, соперничали друг с другом в громоздкости и сложности.

Во времена М.Ломоносова действие умножения уже записывали почти так, как и в наше время. Только множимое называли «еличество», а произведение - «продукт» и, кроме того, не писали знак умножения.

48 - Еличество. 8 - Множитель. 384 - Продукт, или произведение.

Известно, что М. В. Ломоносов знал наизусть всю «Арифметику» Магницкого. В соответствии с этим учебником маленький Миша Ломоносов умножение 48 на 8 объяснил бы так: «8-жды 8 есть 64, я 4 пишу под чертою, против 8, а 6 десятиц во уме имею. И дальше 8-жды 4 есть 32, и я З во уме держу, а к 2 приложу 6 десятиц, и будет 8. И сие 8 напишу подле 4, в ряд к левой руке, а 3 пока во уме суть, напишу в ряд подле 8, к левой же руке. И будет из умножения 48 с 8 произведение 384».

Сейчас мы почти так же объясняем, только говорим по-современному, а не по-старинному и, кроме того, называем разряды. Например, 3 надо писать на третьем месте потому, что это будут сотни, а не просто «в ряд подле 8, к левой же руке».

Что касается деления… В учебнике Л.Ф.Магницкого дается несколько способов деления. Некоторые из этих способов настолько трудные, что в них очень легко запутаться.

Разберем сейчас один из этих способов. Магницкий считает его изящным и простым.

Пусть требуется разделить 598432 на 678. Сначала пишем первые цифры делимого 5984, под ним делитель 678. Делим 59 на 7 (678 близко к 700), получаем первую цифру частного 8 и пишем ее справа против делимого, умножаем 8 на 678: восемью восемь 64, отнимаем в уме 4 из 4 и пишем над 4 остаток 0; восемью семь 56, да 6 в уме-62, отнимаем 2 от 8, получаем в остатке 6 и пишем его над 8; 8X6=48, 48 +6=54, 59-54=5, значит, над 59 пишем остаток 5. Теперь к остатку 560 сносим следующую цифру делимого 3 и продолжаем действие в таком же порядке.

Закончив с трудом деление, наши предки считали обязательным проверить его один-два раза. Магницкий в данном случае ограничивается одной проверкой. Он рекомендует умножать с высших разрядов: 678 х 8=5424, еще раз. 678 х 8 = 5424 и 678 х 2= 1356; под этими числами подписывает остаток и складывает. Получает делимое. «Верно разделено» - писали в заключение в старину.

Вот как выглядела запись деления:

598432 верно разделено

Как видим, этот способ очень напоминает тот, которым пользуемся мы. Вероятно, наш современный способ развился из этого. Других способов разбирать не будем, приведем только форму записи делений «ромбом», который встречается у Магницкого.

Разделить 9649378 на 5634:

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

Yandex.RTB R-A-339285-1

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Определение 1

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Пример 1

Условие: вычислите, сколько будет 7 − 3 + 6 .

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7 − 3 + 6 = 4 + 6 = 10

Ответ: 7 − 3 + 6 = 10 .

Пример 2

Условие: в каком порядке нужно выполнять вычисления в выражении 6: 2 · 8: 3 ?

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Пример 3

Условие: подсчитайте, сколько будет 17 − 5 · 6: 3 − 2 + 4: 2 .

Решение

Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

17 − 5 · 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Ответ: 17 − 5 · 6: 3 − 2 + 4: 2 = 7 .

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

Определение 2

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Определение 3

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример 4

Условие: вычислите, сколько будет 5 + (7 − 2 · 3) · (6 − 4) : 2 .

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

7 − 2 · 3 = 7 − 6 = 1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + (7 − 2 · 3) · (6 − 4) : 2 = 5 + 1 · 2: 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2: 2 = 5 + 2: 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Ответ: 5 + (7 − 2 · 3) · (6 − 4) : 2 = 6 .

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Пример 5

Условие: вычислите, сколько будет 4 + (3 + 1 + 4 · (2 + 3)) .

Решение

У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · (2 + 3) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

Ответ: 4 + (3 + 1 + 4 · (2 + 3)) = 28 .

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет (4 + (4 + (4 − 6: 2)) − 1) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6: 2 = 4 − 3 = 1 , исходное выражение можно записать как (4 + (4 + 1) − 1) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению (4 + 5 − 1) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 - 1 , результатом которой будет 7 .

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Пример 6

Условие: найдите, сколько будет (3 + 1) · 2 + 6 2: 3 − 7 .

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид (3 + 1) · 2 + 36: 3 − 7 .

(3 + 1) · 2 + 36: 3 − 7 = 4 · 2 + 36: 3 − 7 = 8 + 12 − 7 = 13

Ответ: (3 + 1) · 2 + 6 2: 3 − 7 = 13 .

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Если между собой сравнить функции сложение и вычитание с умножением и делением, то умножение и деление всегда рассчитываются в первую очередь.

    В примере такие две функции, как сложение и вычитание, а также умножение и деление равнозначны между собой. Очердность выполнения определяется в порядке очереди слева направо.

    Следует помнить тот факт, что особым приоритетом в примере обладают действия, взятые в круглые скобки. Таким образом, даже если за пределами скобок стоит умножение, а в скобках сложение, следует сначала сложить, а уже потом умножить.

    Чтобы разобраться в этой теме,можно рассмотреть все случаи поочередно.

    Сразу учтем,что наши выражения не имеют скобок.

    Итак,если в примере первое действие умножение,а второе-деление,то первым выполняем умножение.

    Если в примере первое действие деление,а второе умножение,то первым делаем деление.

    В таких примерах действия выполняются в порядке слева направо,независимо от того,какие используются числа.

    Если же в примерах помимо умножения и деления имеются сложение и вычитание,то умножение и деление делаются в первую очередь,а потом сложение и вычитание.

    В случае со сложением и вычитанием также нет разницы,какое из этих действий делается первым.Соблюдается порядок слева направо.

    Рассмотрим разные варианты:

    В данном примере первое действие, которое необходимо произвести это умножение, а затем уже сложение.

    В этом случае, вы сначала умножаете значения, затем делите, а только потом складываете.

    В этом случаи вы должны сначала сделать все действия в скобках, а затем только делать умножение и деление.

    А так надо запомнить, что в любой формуле сначала выполняются действия как умножение и деление, а затем только вычитание и сложение.

    Также с числами, которые стоят в скобках нужно посчитать их в скобках, а только потом делать различные манипуляции, помня последовательность описанную выше.

    Первыми будут следующие действия: умножение и деление.

    Только затем выполняются сложение и вычитание.

    Однако если есть скобка, то в первую очередь будут выполняться действия, которые находятся в них. Даже если это сложение и вычитание.

    Например:

    В этом примере сначала выполним умножение, то 4 на 5, затем к 20 прибавим 4. Получится 24.

    Но если будет так: (4+5)*4, то сначала выполним сложение, получаем 9. Затем 9 умножаем на 4. Получаем 36.

    Если в примере присутствуют все 4 действия, то сначала идет умножение и деление, а потом сложение и вычитание.

    Или в примере 3 разных действия, то первым будет либо умножение (либо деление), а потом либо сложение (либо вычитание).

    Когда НЕТ СКОБОК.

    Пример: 4-2*5:10+8=11,

    1 действие 2*5 (10);

    2 действие 10:10 (1);

    3 действие 4-1 (3);

    4 действие 3+8 (11).

    Все 4 действия можно разделить на две основные группы, в одной - сложение и вычитание, в другой - умножение и деление. Первыми будет то действие, который первый по счету в примере, то есть самый левый.

    Пример: 60-7+9=62, сначала нужно 60-7, потом то, что получится (53) +9;

    Пример: 5*8:2=20, сначала нужно 5*8, потом то, что получится (40) :2.

    Когда ЕСТЬ СКОБКИ в примере, то сначала выполняются действия которые в скобке (согласно вышеперечисленными правилам), а потом остальные как в обычно.

    Пример: 2+(9-8)*10:2=7.

    1 действие 9-8 (1);

    2 действие 1*10 (10);

    3 действие 10:2 (5);

    4 действие 2+5 (7).

    Зависит как записано выражение, рассмотрим на простейшем числовом выражении:

    18 - 6:3 + 10х2 =

    Сначала выполняем действия с делением и умножением, затем по очереди, слева направо, с вычитанием и сложением: 18-2+20 = 36

    Если это выражение со скобками, тогда выполняют действия в скобках, затем умножение или деление и в заключение сложение/вычитание, например:

    (18-6) : 3 + 10 х 2 = 12:3 + 20 = 4+20=24

    Вс правильно: сначала выполняют умножение и деление, затем сложение и вычитание.

    Если в примере нет скобок, то в первую очередь выполняется умножение и деление по порядку, а потом уже сложение и вычитание, то же по порядку.

    Если в примере только умножение и деление, то действия будут выполняться по порядку.

    Если в примере только сложение и вычитание, то действия тоже будут выполняться по порядку.

    В первую очередь выполняются действия в скобках по тем же правилам, то есть сначала умножение и деление, и только потом сложение и вычитание.

    22-(11+3Х2)+14=19

    Порядок выполнения арифметических действий прописан строго, чтобы не было никаких разночтений при выполнении однотипных вычислений разными людьми. Прежде всего выполняются умножение и деление, потом сложение и вычитание, если действия одного порядка идут одно за другим, то они выполняются в порядке очереди слева направо.

    Если при записи математического выражения используются скобки, то в первую очередь следует выполнить действия указанные в скобках. Скобки помогают изменить очередность при необходимости сперва выполнить сложение или вычитание, а уже после умножение и деление.

    Любые скобки можно раскрыть и тогда порядок выполнения вновь будет правильным:

    6*(45+15) = 6*45 +6*15

    Лучше сразу в примерах:

    • 1+2*3/4-5=?

    В этом случае выполняем сначала умножение, так как оно стоит левее чем деление. Потом деление. Затем сложение, так по причине более левого расположения и в конце вычитание.

    • 1*3/(2+4)?

    сначала делаем вычисление в скобках, затем умножение и деление.

    • 1+2*(3-1*5)=?

    Сначала делаем действия в скобках: умножение, затем вычитание. После этого идет умножение вне скобок и сложение кв конце.

    Первоочередно идет умножение и деление. Если есть в примере скобки, то в начале считают действие в скобках. Какой бы знак там ни был!

    Тут необходимо помнить несколько основных правил:

    1. Если в примере отсутствуют скобки и присутствуют операции - только сложение и вычитание, либо только умножение и деление - в этом случае все действия осуществляются по порядку слева на право.

    Например, 5+8-5=8(выполняем все по порядку - к 5 прибавляем 8, а затем отнимаем 5)

    1. Если в примере присутствуют смешанные операции - и сложение, и вычитание, и умножение, и деление, то в первую очередь выполняем операции умножение и деление, а затем только сложение или вычитание.

    Например, 5+8*3=29 (сначала 8 умножаем на 3, а затем прибавляем 5)

    1. Если в примере имеются скобки, то вначале выполняются действия в скобках.

    Например, 3*(5+8)=39 (сначала 5+8, а затем умножаем на 3)

Мы познакомимся с действием умножение и узнаем, как это действие связано со сложением.

Решим следующую задачу:

Задача 1 (рис. 1)

В доме 5 этажей. На каждом этаже по 4 квартиры. Сколько квартир в этом доме?

Рис. 1. Иллюстрация к задаче 1

На рисунке (рис. 1) изображен такой дом. Чтобы узнать количество квартир в доме, нужно сложить квартиры, находящиеся на первом (4), втором (4), третьем (4), четвертом (4) и пятом (4) этажах.

4 + 4 + 4 + 4 + 4 = 20

В данном примере мы находим сумму одинаковых слагаемых. В математике это можно заменить другим действием - умножением. Мы заменим сумму произведением, мы сложили 5 раз по 4 квартиры - это можно записать как 4 · 5.

4 + 4 + 4 + 4 + 4 = 4 · 5 = 20

Ответ: в доме 20 квартир.

Задание 1

Потренируемся заменять сложение умножением и умножение сложением.

Рассмотрим пример: заменим сумму одинаковых слагаемых произведением (произведение - это результат умножения): 5 + 5 + 5 = . Слагаемое 5 повторяется 3 раза, поэтому сумму 5 + 5 + 5 можно заменить произведением 5 · 3.

5 + 5 + 5 = 5 · 3

Теперь рассмотрим обратный пример: необходимо произведение 8 · 2 представить в виде суммы одинаковых слагаемых. 8 · 2 - это 8 повторить 2 раза, то есть 8 + 8.

Посмотрим на выражение: 7 + 4 + 10 + 6 = и скажем, можно ли его заменить умножением.

В данном примере мы находим сумму не одинаковых, а разных слагаемых (первое слагаемое - 7, второе - 4, третье - 10, четвертое - 6). Значит, такую сумму заменить произведением нельзя, так как слагаемые не одинаковые. Мы можем только вычислить значение данного выражения. Выполним это удобным способом , для этого воспользуемся переместительным свойством сложения.

7 + 4 + 10 + 6 = 6 + 4 + 10 + 7 = 10 + 10 + 7 = 27

Задание 2

Составьте выражение, для того чтобы узнать, сколько кругов расположено на доске (рис. 2).

Рис. 2. Иллюстрация к задаче 2

Посмотрим внимательно: мы видим, что в каждом ряду 6 кругов (Важно, что количество кругов одинаковое). Выражение, которое поможет нам узнать общее количество кругов, - 6 + 6. Это сумма одинаковых слагаемых, значит, мы можем заменить ее произведением:

6 + 6 = 6 · 2 = 12

На данном уроке мы познакомились с действием умножения, а на следующем уроке мы научимся составлять выражения на умножение и находить их значение.

Смысл действия умножения состоит в том, что при умножении находится сумма одинаковых слагаемых. Первое число при умножении показывает, какое слагаемое повторяют несколько раз. Второе число при умножении показывает, сколько раз повторяют это слагаемое. Результат умножения показывает, какое число получается. Например:

Список литературы

  1. Александрова Э.И. Математика. 2 класс. - М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. - М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. - М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. 86talsch-okt.edusite.ru ().
  3. Prosv.ru ().
  4. Nachalka.school-club.ru ().

Домашнее задание

Заменить в следующих выражениях сложение умножением:

а. 2 + 2 + 2 + 2 =

г. 9 + 9 + 9 + 9 + 9 + 9 =

Заменить в следующих выражениях умножение сложением.


1. Элементы комбинаторики. Правила умножения и сложения.

Комбинаторика – раздел математики, в котором изучаются задачи выбора элементов из заданного множества и расположения их в группы по заданным правилам, в частности задачи о подсчете числа комбинаций (выборок), получаемых их элементов заданного множества. В каждой из них требуется подсчитать число возможных вариантов осуществления некоторого действия, ответить на вопрос: «Сколькими способами?» Многие комбинаторные задачи могут быть решены с помощью следующих 2х важных правил, называемых соответственно правилами умножения и сложения.

Правило умножения .

Если из нек множ первый объект (элемент х) можно выбрать n1 способами и после каждого такого выбора второй объект (элем у) можно выбр n2 способами, то оба объекта (х и у) в указ порядке можно выбрать n1*n2 способами.

Это правило распр-ся на случай трех и более объектов.

Пример : сколько трехзначных чисел можно составить из цифр 1,2,3,4,5, если: а) числа не повт; б) числа могут повтор.

Решение: а) 1ую цифру выбираем 5мя способами, 2ую – 4мя, 3 – 3мя 5*4*3=60 способов

б) 5*5*5=125 сособов

Правило сложения

Если некот объект х можно выбр n1 способами, а объект у можно выбр n2 способами, причем первые и вторые выборы таковы, что они взаимно искл друг друга и не могут быть получены одновременно, то объект хUу (х или у) можно выбр n1+n2 способами.

Пример : Четыре города M,N,P,K соединены дорогами так, что из M в N ведут 5дорог, из N в K – 6 дорог, из M в P ведут 4 дороги, из P в К – 3 дороги.

Сколькими способами можно проехать из М в К?

Решение: Из М в К через N ведут 5*6=30 дорог, Из М в К через P ведут 4*3=12 дорог

Из М в К ведут 30+12=42 дороги.

2. Размещения, перестановки, сочетания.

Размещениями из n-элементов по m элементов в каждом называются такие комбинации, из которых каждая содержит m элементов из данных n элементов, и которые отличаются друг от друга порядком их следования, либо самими элементами.

Если элементы комбинации не повторяются.

Размещениями из n-элементов по m элементов с повторениями называются такие комбинации, в которых каждая содержит m элементов из данных n элементов, записанных в каком нибудь порядке, причем один и тот же элемент может входить в комбинацию более одного раза.

Размещения с повторениями обозначаются Ã и вычисляются по формуле:


Примеры в 1ом вопросе!

Перестановками из n-элементов называются такие комбинации, которые отличаются лишь порядком следования этих элементов.

Пример: Имеется 5 равных геом фигур: 3 желтых и 2 белых круга. Сколько различных узоров можно составить из этих кругов, располагая их в ряд?

Решение: Желтые круги будут повт 2! раз

Белые - 3! раз

Число разл узоров будет равно 5!/2!*3!=10

Перестанови, в которых хотя бы один элемент встречается более одного раза, называются перестановкам с повторениями.

Сочетаниями из n-элементов по m элементов в каждом называются такие комбинации, каждая из которых состоит из m элементов, выбранных из данных n элементов, и которые отличаются друг от друга хотя бы одним элементом.


Пример: Сколькими способами можно выбрать 3 представителей учебной группы в студ совет, если в группе 25чел.

Сочетаниями из n-элементов по m с повторениями назыв такие комбинации, каждая из которых состоит из m элементов из данных n элементов, причем один и тот же элемент может входить в комбинацию более одного раза.

Обозначается – Č и вычисл по форм:


3. Бином Ньютона.

Бином Ньютона – это формула, представляющая выражение

в виде многочлена.

Она имеет вид:

Её можно записать иначе:


, где - число сочетаний из n элементов по k,


Известные формулы сокращенного умножения: квадрат суммы, квадрат разности, куб суммы, куб разности являются частными случаями бинома Ньютона.

Когда степень бинома невелика, коэффициенты многочлена могут быть получены с помощью треугольника Паскаля.

Любой элемент треугольника паскаля, распол в n-ой строке на k-ом месте выражает ,

Где отчет n ведется от 1, а отчет k ведется от 0.

Пример : Представить в виде многочлена

    Булевы функции. Определение. Примеры.

Алгебра логики, выстроенная в XIX веке, долго существовала как абстрактная, хотя и очень красивая наука. Но в середине XX века оказалось, что она имеет конкретное и очень важное применение в современной жизни. Булева алгебра в настоящее время служит основой для описания логики работы аппаратных и программных средств ЭВМ. Она ис-пользует логические переменные, которые принимают лишь два значения 0 и 1. Аналогично и ЭВМ использует лишь сигналы 0 и 1, воспринимая их как логические переменные.

Рассмотрим множество В = {0;1}.

Тогда В 2 = {(0;0),(0;1),(1;0),(1;1). Снимем разделительный к внутри каждой пары и уберём скобки. Тогда В 2 = {00, 01,10,11}. Аналогично В 3 = Вх В 2 ={000,001,010,011,100,101,110,111} и т. д.,

Каждому элементу множества В n поставим в соответствие единст-венный элемент множества В - {0; 1}. Полученное соответствие наз булевой функцией . Элементы множества В n являются значениями аргумента булевой функции. Они представляют собой наборы, состоящие из нулей и единиц, и называются кортежами. Длиной кортежа назы-вается число цифр, образующих кортеж. Множество В n - область определения функции

Множества значений булевой функции, вообще говоря это значение функции В = {0;1}.

Задание булевой функции в виде таблицы, в которой указаны значения каждой переменной кортежа и значение самой функции, называется заданием таблицей истинности или матричным заданием булевой функции.

Геометрическая интерпретация отражает геометрический способ задания булевых функций.

Область определения D (f ) булевой функции n = 1 это совокупность двух точек 0 и 1 числовой прямой, т.е. одномерного куба

Если п = 2, то D (f ) = {00,01,10,11}- это множество вершин квадрата, т. е. двухмерного куба

Если п = 3, то D (f ) = {000,001,010,01 1,100,101,110,111}

множество вершин трёхмерного куба в декартовой системе координат.

На кортежах длины n можно составить

различных простейших булевых функций.

Если n=1, то число простейших булевых функций равно 4, если n=2, то их 16, если n=3, то их 256

Если n=1, то существует 4 простейших булевых функций:


- константа 0(тождественный 0)


- константа 1(тождественная 1)


- тождественная функция


- отрицание

5. Реализация булевых функций формулами.










Отрицание

Конъюнкция (логическое умножение)

Дизъюнкция

Импликация

Отрицание импликации

Эквиваленция

Сумма по модулю 2

Стрелка Пирса

‌‌‌ ‌‌‌‌‌‌│ - штрих Шеффера

Порядок действий в формулах определяется с помощью скобок. Чтобы уменьшить их количество, на множестве функций вводится порядок действий.

Самой старшей считается «отрицание»

Затем – «конъюнкция», «штрих Шеффера», «стрелка Пирса»

Затем – «дизъюнкция»

Затем – «импликация»

На самом низком уровне – эквиваленция и сумма по модулю 2.

Булевы функции называют равными, если совпадают их таблицы истинности. Функции, соответствующие равным формулам, называются равносильными. Следует отметить, что одна и та же функция может быть представлена разными формулами.


Правила комбинаторики При вычислении количества различных комбинаций используются правила сложения и умножения . Сложение используется, когда...

  • Дискретная математика. Теория вероятностей и математическая статистика

    Книга >> Математика

    17 4.2. Условная вероятность. Теоремы сложения и умножения вероятностей 22 4.3. Полная вероятность. Формула... то сегодня пятница. 3.3. Элементы комбинаторики Правило суммы: Если элемент x можно выбрать n способами, а элемент y  m способами, ...

  • Решение вопросов теории вероятности на уроках математики

    Дипломная работа >> Педагогика

    Событий, сложение и умножение вероятностей. После этого идет блок комбинаторики , где рассматривается правило умножения , перестановки, ... и других. Библиография Бродский, Я. Об изучении элементов комбинаторики , вероятности, статистики в школе [Текст] / Я. ...

  • Методика обучения решению комбинаторных задач

    Дипломная работа >> Педагогика

    Статистические исследования. 3. Элементы комбинаторики . 4. Начальные... элементов по k и сочетания из n элементов по k. С помощью комбинаторного правила умножения ... «Сложение и умножение вероятностей» рассматриваются теоремы сложения и умножения вероятностей...

  • независимого проведения двух испытаний А и В , следует перемножить число всех исходов испытания А и число всех исходов испытания В .

    Правило умножения для двух независимых испытаний удобно объяснять, используя прямоугольники, разбитые на квадратики, или прямоугольные таблицы. Но если проводятся три испытания, то для иллюстрации надо использовать и длину, и ширину, и высоту, и на картинке получится прямоугольный параллелепипед, разбитый на кубики. Здесь уже рисунок и объяснения становятся сложнее, поскольку, например, будут невидимые кубики. Еще хуже дело обстоит с четырьмя испытаниями. В этом случае для рисунка нам просто не хватит измерений, ведь окружающее нас пространство всего лишь трехмерно.

    Оказывается, правило умножения для трех, четырех и т. д. испытаний можно объяснить, не выходя за рамки плоскости, с помощью геометрической модели, которую называют деревом возможных вариантов. Она, во-первых, наглядна как всякая картинка, и, во-вторых, позволяет все учесть, ничего не пропустив.

    Пример 3 . Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

    Решение. Будем искать решение с помощью дерева возможных вариантов (рис. 4.1). Посмотрим на его левую «веточку», идущую от «флага», пусть верхняя полоса – белого цвета , тогда средняя полоса может быть синей или красной, а нижняя – соответственно, красной или синей. Получилось два варианта цветов полос флага: белая, синяя, красная и белая, красная, синяя.

    Пусть теперь верхняя полоса – синего цвета , это вторая «веточка».

    Рисунок 4.1

    Тогда средняя полоса может быть белой или красной, а нижняя – соответственно, красной или белой. Получилось еще два варианта цветов полос: синяя, белая, красная и синяя, красная, белая.

    Аналогично рассматривается случай для верхней полосы красного цвета. Получится еще два варианта: красная, белая, синяя и красная, синяя, белая полосы флагов. Всего 6 комбинаций.

    Построенная схема действительно напоминает дерево, только перевернутое. Видимо, поэтому ее и называют деревом возможных вариантов.

    Вот как, например, выглядит дерево возможных вариантов для примера 1 (рисунок 4.2):

    Для следующего примера мы приведем три различных способа решения: с помощью простого перебора , с помощью дерева вариантов и по правилу умножения.

    Рисунок 4.2

    Пример 4. В коридоре висят три лампочки. Сколько имеется различных способов освещения коридора?

    Решение.

    Первый способ . Пронумеруем лампочки и будем писать «+» или «-» в зависимости от того, горит или не горит очередная лампочка. Тогда все способы освещения можно просто перечислить: + + +, + + -, + - +, - + +, + - -, - + -, - - +,

    Всего 8 способов.

    Второй способ . Дерево возможных вариантов представлено на рисунке 4.3. С его помощью находим, что осветить коридор можно 8 способами.

    Третий способ. Первая лампочка может или гореть, или не гореть, т.е. имеется два возможных исхода. То же самое относится и ко второй, и к третьей лампочкам. Мы предполагаем, что лампочки горят или нет независимо друг от друга. По

    Рисунок 4.3 правилу умножения получаем, что число всех способов освещения равно 2 2 2 = 8.

    У каждого из этих трех способов решения в каждом конкретном случае есть свои преимущества и свои недостатки. Выбор способа решения – за вами! Отметим все же, что правило умножения позволяет в один шаг решать самые разнообразные задачи. Например, оно приводит к крайне важному в математике понятию факториала. Рассмотрим сначала примеры.

    Пример 5 . В семье – 6 человек, и за столом в кухне стоят 6 стульев. В семье решили каждый вечер, ужиная, рассаживаться на эти 6 стульев по-новому. Сколько дней члены семьи смогут делать это без повторений?

    Решение. Ответ оказывается неожиданно большим: почти два года! Объясним его. Для удобства рассуждений будем считать, что семья (бабушка, дедушка, мама, папа, дочь, сын) будет рассаживаться на стулья поочередно. Нас интересует, сколько всего существует различных способов их размещения на стульях.

    Предположим, что первой усаживается бабушка. У нее имеется 6 вариантов выбора стула. Вторым садится дедушка и независимо выбирает стул из 5 оставшихся. Мама делает свой выбор третьей и выбор у нее будет из 4 стульев. У папы будет уже 3 варианта, у дочки – 2, ну а сын сядет на единственный незанятый стул. По правилу умножения получаем, что всего имеется 6·5·4·3·2·1 = 720 различных способов размещения. Таким образом, в «игру с рассаживаниями» семья может играть 720 дней, т. е. почти 2 года.

    Ответ: 720.

    Пример 6 . Десять разных писем раскладывают по одному в десять конвертов. Сколько существует способов такого раскладывания?

    Решение. Предложенная ситуация отличается от предыдущей (пример 5). Действительно, там были люди и стулья, здесь – письма и конверты. Однако и здесь, и там требуется узнать, сколькими способами можно разместить п предметов на п местах.

    Повторяя предыдущее решение, получаем, что всего имеется 10·9·8·7·6·5·4·3·2·1=3 628 800 способов раскладывания писем по конвертам. Более 3,5 миллионов!

    Ответ: 3628800.

    Как мы видим, условия задач – разные, а решения, да и полученные ответы, по сути дела, одинаковы. Удобно поэтому ввести и одинаковые обозначения для таких ответов.

    Определение. Произведение первых подряд идущих п натуральных чисел обозначают п!

    п! = 1·2·3·…·(п-2)·(п-1)·п

    Знак п! читается как «эн факториал», что в дословном переводе с английского языка означает «состоящий из п множителей». Приведем несколько первых значений для п:

    3! = 1·2·3 = 6

    4! = 1·2·3·4 = 24

    5! = 1·2·3·4·5 = 120

    6! = 1·2·3·4·5·6 = 720 и т.д.

    Рассмотрим еще несколько примеров:

    Пример 7. Вычислить: а) 3!; б) 7!-5!; в) .

    Решение. а) 3!=1∙2∙3=6.

    б) т.к. 7!= 1∙2∙3∙4∙5∙6∙7 и 5!= 1∙2∙3∙4∙5, то 5! можно вынести за скобки, тогда получим 5!(6∙7-1)= 1∙2∙3∙4∙5∙41=4920.

    в) .

    Пример 8. Упростить выражение: .

    Решение. =1∙2∙3∙…∙(п- 1)∙п∙(п+1), а =1∙2∙3∙…∙(п-1), после сокращения получим п∙(п+1).

    Как же сформулировать общее утверждение, частными случаями которого являются решения примеров 3, 5 и 6? Вот один из возможных вариантов.

    ТЕОРЕМА: п различным элементам можно присвоить номера от 1 до п ровно п! различными способами.

    Каждый способ нумерации от 1 до п , о котором идет речь в теореме, часто называют перестановкой данного п -элементного множества. Действительно, можно считать, что каждая такая нумерация просто расставляет или переставляет все элементы множества в некотором порядке.

    Перестановками из п элементов называют комбинации, которые отличаются друг от друга только порядком элементов.

    Число перестановок множества из п элементов обозначают Р п . Значит, приведенную теорему можно записать в виде формулы:

    Р п = п!

    Кроме правила умножения в комбинаторике иногда используется еще правило сложения: Для того чтобы найти число всех возможных исходов независимого проведения одного из двух испытаний А или В, следует сложить число всех исходов испытания А и число всех исходов испытания В.

    Пример 9. На столе в стаканчике стоит 5 карандашей и 3 ручки. Для того, чтобы написать записку (записать телефонный номер и т.п.), мы можем взять 1 из 5 карандашей или 1 из 3 ручек, то есть у нас имеется 5 возможностей выбора одного карандаша и 3 возможности выбора одной ручки. Так как мы выбираем только 1 предмет, карандаш или ручку, то число всех возможностей выбора равно: 5 + 3 = 8.

    Правила умножения и сложения применимы для любого количества независимых испытаний.

    Подведем итоги нашего знакомства с простейшими комбинаторными задачами. Мы получили основное правило – правило умножения, рассмотрели его геометрическую модель – дерево возможных вариантов, ввели новое понятие – факториал, сформулировали теорему о перестановках, в которой это понятие используется.