Бериллий. Свойства бериллия

(Beryllium ) Be – химический элемент 2 (IIa ) группы Периодической системы Д.И.Менделеева. Атомный номер 4, относительная атомная масса 9,01218. В природе встречается только один стабильный изотоп 9 Be . Известны также радиоактивные изотопы бериллия 7 Be и 10 Be с периодами полураспада 53.29 дней и 1,6·10 6 лет, соответственно. Степени окисления +2 и +1 (последняя крайне неустойчива).

Бериллиесодержащие минералы известны с древности. Некоторые из них добывались на Синайском полуострове еще в 17 в. до н.э. Название берилл встречается у греческих и латинских (Beryll) античных писателей. Сходство берилла и изумруда отмечал Плиний Старший : «Берилл, если подумать, имеет ту же природу, что и смарагд (изумруд), или, по крайней мере, очень похожую» (Естественная история, книга 37). В Изборнике Святослава (1073) берилл фигурирует под названием вируллион.

Бериллий был открыт в 1798. Французский кристаллограф и минералог Рене Жюст Гаюи (

Haüy René Just ) (1743–1822), отметив сходство твердости, плотности и внешнего вида зеленовато-голубых кристаллов берилла из Лиможа и зеленых кристаллов изумруда из Перу, предложил французскому химику Никола Луи Воклену (Vauquelin Nicolas Louis ) (1763–1829) проанализировать берилл и изумруд, чтобы узнать, не являются ли они химически идентичными. В результате Воклен показал, что оба минерала содержат не только оксиды алюминия и кремния, как было известно и раньше, но также и новую «землю», которая очень напоминала оксид алюминия, но, в отличие от него, реагировала с карбонатом аммония и не давала квасцов. Именно этими свойствами Воклен и воспользовался для разделения оксидов алюминия и неизвестного элемента.

Редакция журнала «

Annakts de Chimie », опубликовавшего работу Воклена, предложила для открытой им земли название «глицина» за способность к образованию соединений, обладающие сладким вкусом. Известные химики Мартин Генрих Клапрот (Klaproth Martin Heinrich ) (1743–1817) и Андерс Экеберг (Ekeberg Anders ) (1767–1813) сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее, в научной литературе 19 в. для нового элемента долгое время использовали термины «глиций», «глициний» или «глюциний». В России до середины 19 в. оксид этого элемента называли «сладкоземом», «сладимой землей», «сладоземом» а сам элемент именовался глицинием, глицинитом, глицием, сладимцем В виде простого вещества элемент, открытый Вокленом, впервые получил немецкий химик Фридрих Вёлер (Wöhler Friedrich ) (1800–1882) в 1828, восстановливая хлорид бериллия калием: BeCl 2 + 2 K = Be + 2 KCl

Независимо от него в этом же году тем же методом металлический бериллий был выделен французским химиком Антуаном Бюсси (

Bussy Antoine ) (1794–1882).

Общепринятым стало название элемента по имени минерала (латинское

beryllus от греческого bhrnlloV ), однако во Франции бериллий до сих пор называют глицинием.

Было установлено, что масса одного эквивалента бериллия равна примерно 4,7 г/моль. Однако сходство между бериллием и алюминием привело к существенному заблуждению относительно валентности и атомной массы бериллия. Долгое время бериллий считали трехвалентным с относительной атомной массой 14 (что примерно равно утроенной массе одного эквивалента бериллия 3

× 4,7). Лишь через 70 лет после открытия бериллия русский ученый Д.И. Менделеев пришел к выводу, что в его периодической таблице места для такого элемента нет, а вот двухвалентный элемент с относительной атомной массой 9 (приблизительно равной удвоенной массе одного эквивалента бериллия 2 × 4,7) легко размещается между литием и бором.

Бериллий в природе и его промышленное извлечение. Бериллий, как и соседние с ним литий и бор, относительно мало распространен в земной коре, его содержание составляет около 2·10 –4 %. Хотя бериллий и редкий элемент, но он не является рассеянным, так как входит в состав поверхностных залежей берилла в пегматитовых породах, которые последними закристаллизовались в гранитных куполах. Есть сообщения о гигантских бериллах длиной до 1 м и массой до нескольких тонн.

Известно 54 собственно бериллиевых минерала. Важнейший из них – берилл 3

BeO · Al 2 O 3 ·6 SiO 2 . У него много окрашенных разновидностей. Изумруд содержит около 2% хрома, придающего ему зеленый цвет. Аквамарин своей голубой окраской обязан примеси железа(II ). Розовый цвет воробьевита обусловлен примесью соединений марганца(II ), а золотисто-желтый гелиодор окрашен ионами железа(III ). Промышленно важными минералами являются также фенакит 2 BeO · SiO 2 , бертрандит 4 BeO ·2 SiO 2 · H 2 O , гельвин (Mn , Fe , Zn ) 4 [ BeSiO 4 ] 3 S .

Мировые природные ресурсы бериллия оцениваются более чем в 80 тыс. т (по содержанию бериллия), из которых около 65% сосредоточено в США, где основным бериллиевым сырьем является бертрандитовая руда. Ее подтвержденные запасы в США на месторождении Spur Mountain (шт. Юта), являющемся основным в мире источником бериллия, на конец 2000 составили примерно 19 тыс. т (по содержанию металла). Берилла в США очень мало. Из других стран наибольшими запасами бериллия обладают Китай, Россия и Казахстан. Во времена СССР бериллий на территории России добывался на Малышевском (Свердловская область), Завитинском (Читинская область), Ермаковском (Бурятия), Пограничном (Приморский край) месторождениях. В связи с сокращением ВПК и прекращением строительства атомных электростанций, его добыча была прекращена на Малышевском и Ермаковском и значительно сокращена на Завитимском месторождениях. При этом значительная часть добываемого бериллия продается за рубеж, в основном, в Европу и Японию.

По оценке Геологической службы США, мировая добыча бериллия в 2000 характеризовалась следующими данными (т):

Всего 356
США 255
КНР 55
Россия 40
Казахстан 4
Прочие страны 2
Характеристика простого вещества и промышленное получение металлического бериллия. По внешнему виду бериллий – серебристо-серый металл. Он очень твердый и хрупкий. Бериллий имеет две кристаллические модификации: a - Be имеет решетку гексагонального типа (что приводит к анизотропии свойств); решетка b - Be относится к кубическому типу; температура перехода составляет 1277° С. Бериллий плавится при 1287° С, кипит при 2471° С.

Это один из самых легких металлов (плотность равна 1,816 г/см 3). У него высокий модуль упругости, в 4 раза больший, чем у алюминия, в 2,5 раза превышающий соответствующий параметр титана, и на треть выше, чем у стали. Бериллий обладает наибольшей среди всех металлов теплоемкостью: 16,44 Дж/(моль К) для

a - Be , 30,0 Дж/(моль К) для b - Be .

По устойчивости к коррозии во влажном воздухе бериллий, благодаря образованию защитного оксидного слоя, напоминает алюминий. Тщательно отполированные образцы долго сохраняют свой блеск.

Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600° С. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600° С, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200° С с образованием нитрида

Be 3 N 2 , а углерод дает карбид Ве 2 С при 1700° С. С водородом бериллий непосредственно не реагирует, и гидрид ВеН 2 получают косвенным путем.

Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:

Be + 2NaOH (р ) + 2H 2 O = Na 2 + H 2 При проведении реакции с расплавом щелочи при 400–500° С образуются диоксобериллаты: Be + 2 NaOH (ж) = Na 2 BeO 2 + H 2 NH 4 HF BeF 2 и очистки бериллия:

Металлический бериллий быстро растворяется в водном растворе

NH 4 HF 2 . Эта реакция имеет технологическое значение для получения безводного BeF 2 и очистки бериллия: Be + 2 NH 4 HF 2 = (NH 4) 2 [ BeF 4 ] + H 2

Бериллий выделяют из берилла сульфатным или фторидным способом. В первом случае концентрат сплавляют при 750° С с карбонатом натрия или кальция, а затем сплав обрабатывают концентрированной горячей серной кислотой. На образовавшийся раствор сульфата бериллия, алюминия и других металлов действуют сульфатом аммония. Это приводит к выделению большей части алюминия в виде алюмокалиевых квасцов. Оставшийся раствор обрабатывают избытком гидроксида натрия. При этом образуется раствор, содержащий

Na 2 [ Be (OH ) 4 ] и алюминаты натрия. При кипячении этого раствора в результате разложения гидроксобериллата осаждается гидроксид бериллия (алюминаты остаются в растворе).

По фторидному способу концентрат нагревают с

Na 2 [ SiF 6 ] и Na 2 CO 3 при 700–750° С. При этом образуется тетрафторобериллат натрия: 3BeO·Al 2 O 3 ·6SiO 2 + 2Na 2 + Na 2 CO 3 = 3Na 2 + 8SiO 2 + Al 2 O 3 + CO 2 Затем выщелачивают растворимый фторобериллат водой и осаждают гидроксид бериллия при рН около 12.

Для выделения металлического бериллия его оксид или гидроксид сначала переводят в хлорид или фторид. Металл получают электролизом расплавленных смесей хлоридов бериллия и щелочных элементов или действием магния на фторид бериллия при температуре около 1300° С:

BeF 2 + Mg = MgF 2 + Be

Для получения заготовок и изделий из бериллия используют, в основном, методы порошковой металлургии.

Бериллий – легирующая добавка в медных, никелевых, железных и других сплавах. Способность бериллия увеличивать твердость меди была открыта в 1926. Сплавы меди с 1–3% бериллия назвали бериллиевыми бронзами. Сейчас известно, что добавка около 2% бериллия в шесть раз увеличивают прочность меди. Кроме того, такие сплавы (которые также обычно содержат 0,25% кобальта) имеют хорошую электрическую проводимость, высокую прочность и сопротивление износу. Они не магнитны, устойчивы к коррозии и находят многочисленные области применения в движущихся частях двигателей самолетов, точных инструментах, управляющих реле в электронике. Кроме того, они не искрят и поэтому широко применяются для изготовления ручного инструмента в нефтяной промышленности. Никелевый сплав, содержащий 2% бериллия, используется также для высокотемпературных пружин, зажимов, мехов и электрических контактов. Все большее значение приобретают бериллий-алюминиевые сплавы, в которых содержание бериллия достигает 65%. Они имеют широкий круг сфер использования – от авиакосмической промышленности до производства компьютеров.

С помощью бериллия улучшают качество поверхности деталей машин и механизмов. Для этого готовое изделие выдерживают в порошке бериллия при 900–1000° С, и его поверхность делается тверже, чем у лучших сортов закаленной стали.

Еще одна важная область применения бериллия – в ядерных реакторах, так как он является одним из наиболее эффективных замедлителей и отражателей нейтронов. Его используют и в качестве материала для окошек в рентгеновских трубках. Бериллий пропускает рентгеновские лучи в 17 раз лучше, чем алюминий и в 8 раз лучше, чем линдемановское стекло.

Смесь соединений радия и бериллия долгое время использовалась как удобный лабораторный источник нейтронов, образующихся по ядерной реакции:

Be + 4 He = 12 C + 1 n

В 1932 при использовании именно этой смеси английским физиком Джеймсом Чедвиком был открыт нейтрон.

В производстве металлического бериллия доминируют США (американская фирма «Brush Wellman», базирующаяся в Кливленде). Китай и Казахстан также имеют производственные мощности по выпуску металлического бериллия.

Потребление бериллия в США, где этот металл применяется больше всего, в 2000 составило примерно 260 т (по содержанию металла), из которых 75% использовалось в виде медно-бериллиевых сплавов для изготовления пружин, соединителей и переключателей, применяемых в автомобилях, летательных аппаратах и компьютерах. В течение 1990-х цены на медно-бериллиевые сплавы оставались стабильными и составляли примерно 400 долларов за килограмм бериллия, этот уровень цен сохраняется и сейчас.

По оценке компании «Roskill», мировой спрос на бериллий в 2001 резко снизился, в частности, за счет сокращения рынка телекоммуникационного оборудования, являющегося, вероятно, крупнейшей сферой потребления этого металла. Однако эксперты «Roskill» полагают, что в среднесрочной перспективе это снижение будет компенсироваться ростом спроса на медно-бериллиевую ленту со стороны производителей автомобильных электронных устройств и компьютеров. В более отдаленной перспективе, как ожидают, продолжится рост потребления медно-бериллиевых сплавов в производстве подводного телекоммуникационного оборудования, а также повысится спрос на трубы для нефтегазовой промышленности, в состав материала которых входит бериллий.

Маловероятно, что спрос на металлический бериллий заметно возрастет, поскольку цены на альтернативные материалы ниже, чем на бериллий, который является весьма дорогостоящим металлом. Так, в ряде сфер потребления альтернативными ему материалами могут служить графит, сталь, алюминий и титан, а вместо медно-бериллиевых сплавов может использоваться фосфорная бронза.

Соединения бериллия. У бериллия, в отличие от других элементов 2 группы, нет соединений с преимущественно ионными связями, в то же время для него известны многочисленные координационные соединения, а также металлоорганические соединения, в которых часто образуются многоцентровые связи.

Вследствие малого размера атома бериллий почти всегда проявляет координационное число 4, что важно для аналитической химии.

Соли бериллия в воде быстро гидролизуются с образованием ряда гидроксокомплексов неопределенной структуры. Осаждение начинается при отношении

OH – : Be 2+ > 1. Дальнейшее добавление щелочи приводит к растворению осадка.

Гидрид бериллия ВеН 2 был впервые получен в 1951 восстановлением хлорида бериллия с помощью

LiAlH 4 . Он представляет собой аморфное белое вещество. При нагревании до 250° С гидрид бериллия начинает выделять водород. Это соединение умеренно устойчиво в воздухе и воде, но быстро разлагается кислотами. Гидрид бериллия полимеризован за счет трехцентровых связей ВеНВе.

Галогениды бериллия . Безводные галогениды бериллия нельзя получить реакциями в водных растворах вследствие образования гидратов, таких как [

Be (H 2 O ) 4 ] F 2 , и гидролиза. Лучшим способом для получения фторида бериллия является термическое разложение (NH 4) 2 [ BeF 4 ], а хлорид бериллия удобно получать из оксида. Для этого действуют хлором на смесь оксида бериллия и углерода при 650–1000° С. Хлорид бериллия можно также синтезировать прямым высокотемпературным хлорированием металлического бериллия или его карбида. Эти же реакции используются для получения безводных бромида и иодида.

Фторид бериллия – стекловидный материал. Его структура состоит из неупорядоченной сетки из атомов бериллия (КЧ 4), связанных мостиками из атомов фтора, и похожа на структуру кварцевого стекла. Выше 270° С фторид бериллия самопроизвольно кристаллизуется. Подобно кварцу, он существует в низкотемпературной

a -форме, которая при 227° С переходит в b -форму. Кроме того, можно получить формы кристобалита и тридимита. Структурное сходство между BeF 2 и SiO 2 распространяется также на фторобериллаты (которые образуются при взаимодействии фторида бериллия с фторидами щелочных элементов и аммония) и силикаты.

Фторид бериллия – компонент фторобериллатных стекол и солевой смеси, используемой в ядерных реакторах на расплавленных солях.

Хлорид и другие галогениды бериллия можно рассматривать как полиядерные комплексные соединения, в которых координационное число бериллия равно 4. В кристаллах хлорида бериллия есть бесконечные цепочки с мостиковыми атомами хлора

Даже при температуре кипения (550° С) в газовой фазе содержится около 20% молекул димеров Be 2 Cl 4 .

Цепочечная структура хлорида бериллия легко разрушается слабыми лигандами, такими как диэтиловый эфир, с образованием молекулярных комплексов [

BeL 2 Cl 2 ]: Более сильные доноры, такие так вода или аммиак, дают ионные комплексы [ BeL 4 ] 2+ (Cl –) 2 . В присутствии избытка галогенид-ионов образуются галогенидные комплексы, например [ BeF 4 ] 2– .

Оксид бериллия

BeO встречается в природе в виде редкого минерала бромеллита.

Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С – лишь 0,18%. Оксид бериллия, прокаленный не выше 500° С, легко взаимодействует с кислотами, труднее – с растворами щелочей, а прокаленный выше 727° С – лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Оксид бериллия устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.

Оксид бериллия получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата [

Be 4 O (OOCH 3) 6 ] выше 600° С.

Оксид бериллия обладает очень высокой теплопроводностью. При 100° С она составляет 209,3 Вт / (м К), что больше, чем у любых неметаллов и даже у некоторых металлов. Оксид бериллия сочетает высокую температуру плавления (2507° С) при с незначительным давлением пара при температуре ниже этой. Он служит в качестве химически стойкого и огнеупорного материала для изготовления тиглей, высокотемпературных изоляторов, труб, чехлов для термопар, специальной керамики. В инертной атмосфере или вакууме тигли из оксида бериллия могут применяться при температурах до 2000° С.

Хотя оксид бериллия часто заменяют более дешевым и менее токсичным нитридом алюминия, в этих случаях обычно наблюдается ухудшение рабочих характеристик оборудования. Ожидают, что в более отдаленной перспективе продолжится стабильный рост потребления оксида бериллия, особенно в производстве компьютеров.

Гидроксид бериллия

Be (OH ) 2 осаждают из водных растворов солей бериллия аммиаком или гидроксидом натрия. Его растворимость в воде при комнатной температуре намного ниже, чем у его соседей по Периодической системе, и составляет всего лишь 3·10 –4 г л –1 . Гидроксид бериллия амфотерен, вступает в реакции как с кислотами, так и со щелочами с образованием солей, в которых бериллий входит в состав катиона или аниона, соответственно: Be(OH) 2 + 2H 3 O + = Be 2+ + 2H 2 O

Be(OH) 2 + 2OH – = 2–

Гидроксокарбонат бериллия – соединение переменного состава. Образуется при взаимодействии водных растворов солей бериллия с карбонатами натрия или аммония. При действии избытка растворимых карбонатов легко образует комплексные соединения, такие как (NH 4) 2 [ Be (CO 3) 2 ].

Карбоксилаты бериллия . Уникальность бериллия проявляется в образовании устойчивых летучих молекулярных оксид-карбоксилатов с общей формулой [

OBe 4 (RCO 2) 6 ], где R = H , Me , Et , Pr , Ph и т.д. Эти белые кристаллические вещества, типичным представителем которых является основный ацетат бериллия (R = CH 3), хорошо растворимы в органических растворителях, включая алканы, и нерастворимы в воде и низших спиртах. Их можно получить простым кипячением гидроксида или оксида бериллия с карбоновой кислотой. Структура таких соединений содержит центральный атом кислорода, тетраэдрически окруженный четырьмя атомами бериллия. На шести ребрах этого тетраэдра есть шесть мостиковых ацетатных групп, расположенных таким образом, что каждый атом бериллия имеет тетраэдрическое окружение из четырех атомов кислорода. Ацетатное соединение [ OBe 4 (MeCO 2) 6 ] плавится при 285° С и кипит при 330° С. Оно устойчиво к нагреванию и окислению в нежестких условиях, медленно гидролизуется горячей водой, но быстро разлается минеральными кислотами с образованием соответствующей соли бериллия и свободной карбоновой кислоты.

Нитрат бериллия

Be (NO 3) 2 при обычных условиях существует в виде тетрагидрата. Он хорошо растворим в воде, гигроскопичен. При 60–100° С образуется гидроксонитрат переменного состава. При более высокой температуре он разлагается до оксида бериллия.

Основный нитрат [

OBe 4 (NO 3) 6 ] имеет аналогичную карбоксилатам структуру с мостиковыми нитрато-группами. Это соединение образуется при растворении хлорида бериллия в смеси N 2 O 4 и этилацетата с образованием кристаллического сольвата [ Be (NO 3) 2 . 2 N 2 O 4 ], который затем нагревают до 50° С, чтобы получить безводный нитрат Be (NO 3) 2 , быстро разлагающийся при 125° С на N 2 O 4 и [ OBe 4 (NO 3) 6 ].

Бериллиеорганические соединения . Для бериллия известны многочисленные соединения, содержащие связи бериллий–углерод. Соединения состава Ве

R 2 , где R – алкил, являются ковалентными и имеют полимерную структуру. Соединение (CH 3) 2 Be имеет цепочное строение с тетраэдрическим расположением метильных групп вокруг атома бериллия. Он легко возгоняется при нагревании. В парах существует в виде димера или тримера.

Соединения

R 2 Be самовоспламеняются на воздухе и в атмосфере диоксида углерода, бурно реагируют с водой и спиртами, дают устойчивые комплексы с аминами, фосфинами, эфирами.

Синтезируют

R 2 Be взаимодействием хлорида бериллия с магнийорганическими соединениями в эфире или металлического бериллия с R 2 Hg . Для получения (C 6 H 5) 2 Be и (C 5 H 5) 2 Be используют реакцию хлорида бериллия с соответствующими производными щелочных элементов.

Предполагают, что соединения состава

RBeX (Х – галоген, OR , NH 2 , H ) представляют собой R 2 Be . BeX 2 . Они менее реакционноспособны, в частности, на них не действует диоксид углерода.

Бериллийорганические соединения используют как катализаторы димеризации и полимеризации олефинов, а также для получения металлического бериллия высокой чистоты.

Биологическая роль бериллия. Бериллий не относится к биологически важным химическим элементам. В то же время, повышенное содержание бериллия опасно для здоровья. Соединения бериллия очень ядовиты, особенно в виде пыли и дыма, обладают аллергическим и канцерогенным действием, раздражают кожу и слизистые оболочки. При попадании в легкие могут вызвать хроническое заболевание – бериллиоз (легочная недостаточность). Заболевания легких, кожи и слизистых оболочек могут возникнуть через 10–15 лет после прекращения контакта с бериллием.

Считают, что токсичные свойства этого элемента связаны со способностью

Be (II ) замещать Mg (II ) в магниесодержащих ферментах за счет его более сильной координационной способности.

Елена

Савинкина ЛИТЕРАТУРА Популярная библиотека химических элементов . Водород–хром. М., Наука, 1971
Карапетьянц М.Х., Дракин С.И. Общая и неорганическая химия . М., Химия, 1992
Greenwood N.N., Earnshaw A. Chemistry of the Elements , Oxford: Butterworth, 1997

Прежде всего несколько (их может быть гораздо больше!) ответов на вопрос: «Что может нам дать бериллий?» ...Самолет, вес которого вдвое меньше обычного; .ракетное топливо с наивысшим удельным импульсом; .пружины, способные выдержать до 20 миллиардов (!) циклов нагрузки - пружины, не знающие усталости, практически вечные.
А в начале нашего века в справочниках и энциклопедиях о бериллии говорилось: «Практического применения не имеет». Открытый еще в конце XVIII в. бериллий 100 с лишним лет оставался «безработным» элементом, хотя химикам уже были известны его уникальные и очень полезные свойства. Для того чтобы эти свойства перестали быть «вещью в себе», требовался определенный уровень развития науки и техники. В 30-х годах академик А.Е. Ферсман называл бериллий металлом будущего. Сейчас о бериллии можно и должно говорить как о металле настоящего.

Бериллий и недоразумение с периодической системой

История элемента № 4 началась с того, что его долго не могли открыть. Многие химики XVIII в. анализировали берилл (основной минерал бериллия), но никто из них не смог обнаружить в этом минерале нового элемента.
Даже современному химику, вооруженному фотометрическим, полярографическим, радиохимическим, спектральным,
радиоактивационным и флуориметрическим методами анализа, нелегко выявить этот элемент, словно прячущийся за спину алюминия и его соединений, - настолько похожи их признаки. Первым исследователям бериллия приходилось, разумеется, гораздо труднее.

Открытие бериллия

В 1798 г. французский химик Луи Никола Воклен, занимаясь сравнительным анализом берилла и изумруда , открыл в них неизвестный окисел - «землю». Она была очень похожа на окись алюминия (глинозем), однако Воклен заметил и отличия. Окисел растворялся в углекислом аммонии (а окись алюминия не растворяется); сернокислая соль нового элемента не образовывала квасцов с сернокислым калием (а сернокислая соль алюминия такие квасцы образует). Именно этой разницей в свойствах Воклен и воспользовался для разделения окислов алюминия и неизвестного элемента. Редакция журнала «Annales de chimie», опубликовавшего работу Воклепа, предложила для открытой им «земли» название «глицина» (от греческого - сладкий) из-за сладкого вкуса ее солей. Однако известные химики М. Клапрот и А. Экеберг сочли это название неудачным, так как соли иттрия также имеют сладковатый вкус. В их работах «земля», открытая Вокленом, называется берилловой. Тем не менее в научной литературе XIX в., вплоть до 60-х годов, элемент № 4 сплошь и рядом называется «глицием», «глицинием» или «глюцинием». Ныне это название сохранилось только во Франции.Луи Никола Воклен (1763-1820) - французский химик, член Парижской академии наук. В 1797 г. в сибирской красной свинцовой руде он открыл новый элемент - хром и выделил его в свободном состоянии. Спустя год (в 1798 г.) в драгоценном минерале берилле Воклен обнаружил окисел еще одного нового элемента, названного бериллием
Интересно отметить, что с предложением называть элемент № 4 бериллием еще в 1814 г. выступал харьковский профессор Ф. И. Гизе.
Окисел был получен, но еще долгое время никому не удавалось выделить бериллий в чистом виде . Только через 30 лет Ф. Вёлер и А. Бюсси получили немного порошкообразного металла действием металлического калия на хлористый бериллий, но металл этот содержал иного примесей.
Прошло еще почти 70 лет, прежде чем П. Лебо смог получить (в 1898 г.) чистый бериллий электролизом бериллиевофтористого натрия.
Сходство бериллия с алюминием принесло немало хлопот и автору периодического закона Д. И. Менделееву. Именно из-за этого сходства в середине прошлого века бериллий считали трехвалентным элементом с атомным весом 13,8. Но, будучи помещен в таблице между углеродом и азотом , как того требовал его атомный вес, бериллий вносил полную путаницу в закономерное изменение свойств элементов. Это было серьезной угрозой периодическому закону. Однако Менделеев был уверен в правильности открытой им закономерности и доказывал, что атомный вес бериллия определен неверно, что бериллий должен быть не трехвалентным, а двухвалентным элементом «с магнезиальными свойствами». Исходя из этого, Менделеев поместил бериллий во вторую группу периодической системы вместе с двухвалентными
щелочноземельными металлами, исправив его атомный вес на 9.


Первое подтверждение своих взглядов Менделеев нашел в одной из малоизвестных работ русского химика И. В. Авдеева, который считал, что окись бериллия химически подобна окиси магния . А в конце 70-х годов прошлого века шведские химики Ларе Фредерик Нильсон и Отто Петерсон (некогда бывшие самыми ярыми сторонниками мнения о трехвалентном бериллии), повторно определив атомный вес бериллия, нашли его равным 9,1.
Так бериллий, бывший первым камнем преткновения на пути периодического закона, только подтвердил его всеобщность. Благодаря периодическому закону стало более четким понятие о физической и химической сущности бериллия. Образно говоря, бериллий получил, наконец, свой «паспорт».
Сейчас бериллием интересуются люди многих профессий. В каждой из них - свой подход к элементу № 4, своя «бериллиевая» проблематика.
Типично редкий элемент. На тонну земного вещества в среднем приходится лишь 4,2 г бериллия. Это, конечно, очень немного, но и не так уж мало, если вспомнить, например, что такого известного элемента как свинец , на Земле вдвое меньше, чем бериллия. Обычно бериллий встречается как незначительная примесь в различных минералах земной коры. И лишь ничтожная часть земного бериллия сконцентрирована в собственных бериллиевых минералах. Их известно более 30, но только шесть из них считаются более или менее распространенными (берилл, хризоберилл , бертрандит, фенакит , гельвин , даналит). А серьезное промышленное значение приобрел пока только один берилл, известный человеку с доисторических времен.
Бериллы встречаются в гранитных пегматитах, имеющихся почти во всех странах земного шара. Это красивые зеленоватые кристаллы, достигающие иногда очень больших размеров; известны бериллы-гиганты весом до тонны и длиной до 9 м.
К сожалению, пегматитовые месторождения очень малы, и добывать там берилл в широких промышленных масштабах не удается. Однако есть и другие источники бериллия, в которых его концентрация гораздо выше. Это так называемые пневмато-гидротермальные месторождения (т. е. месторождения, образовавшиеся в результате взаимодействия высокотемпературных паров и растворов с определенными типами горных пород).
Природный бериллий состоит из единственного устойчивого изотопа 9 Be. Интересно, что бериллий - единственный элемент периодической системы, имеющий при четном номере всего один стабильный изотоп. Известны еще несколько нестабильных, радиоактивных изотопов бериллия. (О двух из них - 10 Be и 7 Be - будет сказано ниже.)
Свойства бериллия чаще всего именуются «удивительными», «чудесными» и т. п. Отчасти это справедливо, причем главная «удивительность» заключается в сочетании противоположных, иногда, казалось бы, взаимоисключающих свойств. Бериллий обладает одновременно и легкостью, и прочностью, и теплостойкостью. Этот металл серебристо-серого цвета в полтора раза легче алюминия и в то же время прочнее специальных сталей. Особенно важно, что бериллий и многие его сплавы не утрачивают полезных свойств при температуре 700- 800°С и могут работать в таких условиях.
Чистый бериллий очень тверд - им можно резать стекло. К сожалению, твердости сопутствует хрупкость.
Бериллий очень устойчив против коррозии. Как и алюминий, он покрывается при взаимодействии с воздухом гонкой окисной пленкой, защищающей металл от действия кислорода даже при высоких температурах. Лишь за порогом 800°С идет окисление бериллия в массе, а при температуре 1200°С металлический бериллий сгорает, превращаясь в белый порошок BeO.
Бериллий легко образует сплавы со многими металлами, придавая им большую твердость, прочность, жаростойкость и коррозионную стойкость. Один из его сплавов - бериллиевая бронза - это материал, позволивший решить многие сложные технические задачи.
Бериллиевыми бронзами называют сплавы меди с 1-3% бериллия. В отличие от чистого бериллия они хорошо поддаются механической обработке, из них можно, например, изготовить ленты толщиной всего 0,1 мм. Разрывная прочность этих бронз больше, чем у многих легированных сталей. Еще одна примечательная деталь: с течением времени большинство материалов, в том числе и металлы, «устают» и теряют прочность. Бериллиевые бронзы - наоборот. При старении их прочность возрастает! Они немагнитны. Кроме того, они не искрят при ударе. Из них делают пружины, рессоры, амортизаторы, подшипники, шестерни и многие другие изделия, от которых требуются большая прочность, хорошая сопротивляемость усталости и коррозии, сохранение упругости в широком интервале температур, высокие электро- и теплопроводные характеристики. Одним из потребителей этого сплава стала авиационная промышленность: утверждают, что в современном тяжелом самолете насчитывается больше тысячи деталей из бериллиевой бронзы.
Добавки бериллия облагораживают сплавы на основе алюминия и магния. Это понятно: плотность бериллия всего 1,82 г/см 3 , а температура плавления - вдвое выше, чем у этих металлов. Самые небольшие количества бериллия (достаточно 0,005%) намного уменьшают потери магниевых сплавов от горения и окисления при плавке и литье. Одновременно улучшается качество отливок, значительно упрощается технология.
Выяснилось, что с помощью бериллия можно увеличивать прочность, жесткость и жаростойкость других металлов, не только вводя его в те или иные сплавы. Чтобы предотвратить быстрый износ стальных деталей, их иногда бериллизуют - насыщают их. поверхность бериллием путем диффузии. Делается это так: стальную деталь опускают в бериллиевый порошок и выдерживают в нем при 900 - 1100°С в течение 10 - 15 часов. Поверхность детали покрывается твердым химическим соединением бериллия с железом и углеродом . Этот прочный панцирь толщиной всего 0,15 - 0,4 мм придает деталям жаростойкость и устойчивость к морской воде и азотной кислоте.
Интересными свойствами отличаются и бериллиды - интерметаллические соединения бериллия с танталом , ниобием , цирконием и другими тугоплавкими металлами. Бериллиды обладают исключительной твердостью и стойкостью против окисления. Лучшей технической характеристикой бериллидов служит тот факт, что они могут проработать более 10 часов при температуре 1650°С.
В истории многих элементов есть особые вехи - открытия, после которых значение этих элементов неизмеримо возрастает. В истории бериллия таким событием стало открытие нейтрона.
В начале 30-х годов немецкие физики В. Боте и Г. Беккер, бомбардируя бериллий альфа-частицами, заметили так называемое бериллиевое излучение - очень слабое, но чрезвычайно проникающее. Оно, как было доказано позже, оказалось потоком нейтронов. А еще позже это свойство бериллия легло в основу «нейтронных пушек» - источников нейтронов, применяемых в разных областях науки и техники.
Так было положено начало изучению атомной структуры бериллия. Выяснилось, что его отличают малое сечение захвата нейтронов и большое сечение их рассеяния. Иными словами, бериллий (а также его окись) рассеивает нейтроны, изменяет направление их движения и замедляет их скорость до таких величин, при которых цепная реакция может протекать более эффективно. Из всех твердых материалов бериллий считается лучшим замедлителем нейтронов.
Кроме того, бериллий может выполнять роль отражателя нейтронов: менять их направление, возвращать нейтроны в активную зону реактора, противодействовать их утечке. Бериллию свойственна также значительная радиационная стойкость, сохраняющаяся и при очень высокой температуре.
На всех этих свойствах, основано применение бериллия в атомной технике - он один из самых необходимых ей элементов.
Замедлители и отражатели из бериллия и его окиси позволяют намного уменьшить размеры активной зоны реакторов, увеличить рабочую температуру и эффективнее использовать ядерное топливо. Поэтому, несмотря на высокую стоимость бериллия, его использование считают экономически оправданным, особенно в небольших энергетических реакторах для самолетов и морских судов.
Окись бериллия стала важным материалом для изготовления оболочек тепловыделяющих элементов (твэлов) атомных реакторов. В твэлах особенно велика плотность нейтронного потока; в них - самая высокая температура, самые большие напряжения и все условия для коррозии. Поскольку уран коррозионно неустойчив и недостаточно прочен, его приходится защищать специальными оболочками, как правило, из BeO.
Большая теплопроводность (в 4 раза выше, чем у стали), большая теплоемкость и жаропрочность позволяют использовать бериллий и его соединения в теплозащитных конструкциях космических кораблей. Из бериллия была сделана внешняя тепловая защита капсулы космического корабля «Фрэндшип-7», на котором Джон Гленн первым из американских космонавтов совершил (после Юрия Гагарина и Германа Титова) орбитальный полет.
В еще большей мере космическую технику привлекают в бериллии легкость, прочность, жесткость, и особенно - необыкновенно высокое отношение прочности к весу. Поэтому бериллий и его сплавы все шире используются в космической, ракетной и авиационной технике.
В частности, благодаря способности сохранять высокую точность и стабильность размеров бериллиевые детали используют в гироскопах - приборах, входящих в систему ориентации и стабилизации ракет, космических кораблей и искусственных спутников Земли.
Элемент № 4 применяется и в других областях современной техники, в том числе в радиоэлектронике. В частности, керамика на основе окиси бериллия стала материалом корпусов так называемых ламп бегущей волны - очень эффективных радиоламп, не утративших своего значения под натиском полупроводников.
Рентгенотехнике металлический бериллий дал прекрасные окна для рентгеновских трубок: благодаря малому атомному весу он пропускает в 17 раз больше мягких рентгеновских лучей, чем алюминий такой же толщины.
Типично амфотерен, т. е. обладает свойствами и металла, и неметалла. Однако металлические свойства все же преобладают.
С водородом бериллий не реагирует даже при нагревании до 1000°С, зато он легко соединяется с галогенами, серой и углеродом. Из галогенидов бериллия наибольшее значение имеют его фторид и хлорид, используемые в процессе переработки бериллиевых руд.
Бериллий хорошо растворяется во всех минеральных кислотах, кроме, как это ни странно, азотной. От нее, как и от кислорода, бериллий защищен окисной пленкой.
Окись бериллия (BeO) обладает ценными свойствами и в некоторых случаях конкурирует с самим бериллием.
Высокая тугоплавкость (температура плавления 2570°С), значительная химическая стойкость и большая теплопроводность позволяют применять окись бериллия во многих отраслях техники, в частности для футеровки бессердечниковых индукционных печей и тиглей для плавки различных металлов и сплавов. Интересно, что окись бериллия совершенно инертна по отношению к металлическому бериллию. Это единственный материал, из которого изготовляют тигли для плавки бериллия в вакууме.
Сравнительно давно используют окись бериллия в производстве стекла. Добавки ее увеличивают плотность, твердость, показатель преломления и химическую стойкость стекол» С помощью окиси бериллия создают специальные стекла, обладающие большой прозрачностью для ультрафиолетовых и инфракрасных лучей.
Стекловолокно, в состав которого входит окись бериллия, может найти применение в конструкциях ракет и подводных лодок.
При горении бериллия выделяется много тепла - 15 тыс. ккал/кг. Поэтому бериллий может быть компонентом высокоэнергетического ракетного горючего.
Некоторые соединения бериллия служат катализаторами химических процессов. С щелочами бериллий реагирует, образуя соли-бериллаты, подобные алюминатам. Многие из них имеют сладковатый вкус, но пробовать на язык их нельзя - почти все бериллаты ядовиты.
Многие ученые считают, что изотопы бериллия 10 Be и 7 Be образуются не в недрах земли, а в атмосфере - в результате воздействия космических лучей на ядра азота и кислорода. Незначительные примеси этих, изотопов обнаружены в дожде, снеге, воздухе, в метеоритах и морских отложениях.
Однако если собрать воедино весь 10 Be, находящийся в атмосфере, водных бассейнах, почве и на дне океана, то получится довольно внушительная цифра - около 800 т.
Изотоп 10 Be (период полураспада 2,5-106 лет) представляет исключительный интерес для геохимии и ядерной метеорологии. Рождаясь в атмосфере, на высоте примерно 25 км, атомы 10 Be вместе с осадками попадают в океан и оседают на дне. Зная концентрацию 10 Be во взятой со дна пробе и период полураспада этого изотопа, можно вычислить возраст любого слоя на дне океана.
Бериллий-10 аккумулируется также в морских илах и ископаемых костях (кости сорбируют бериллий из природных вод). В связи с этим возникло предположение о возможности определения возраста органических остатков по 10Be. Дело в том, что довольно широко освоенный радиоуглеродный метод непригоден для определения возраста образцов в интервале 105-108 лет (из-за большой разницы между периодами полураспада 14C и долгоживущих изотопов 40 K, 82 Rb, 232 Th, 235 U и 238 U). Изотоп 10 Be как раз «заполняет» этот разрыв.
Жизнь другого радиоизотопа - бериллия-7 - значительно короче: период его полураспада равен всего 53 дням. Поэтому не удивительно, что количество его на Земле измеряется граммами. Изотоп 7 Be может быть получен и в циклотроне, но это дорого обойдется. Поэтому широкого применения этот изотоп не получил. Его используют иногда для прогнозирования погоды. Он выполняет роль своеобразной «метки» воздушных слоев: наблюдая изменение концентрации 7 Be, можно определить промежуток времени от начала движения воздушных масс. Еще реже применяют 7 Be в других исследованиях: химики - в качестве радиоактивного индикатора, биологи - для изучения возможностей борьбы с токсичностью самого бериллия.

Бериллий в растениях

Бериллий обнаружен в растениях , произрастающих на бериллийсодержащих почвах, а также в тканях и костях животных. Но если для растения бериллий безвреден, то у животных он вызывает так называемый бериллиевый рахит. Повышенное содержание солей бериллия в пище способствует образованию в организме растворимого фосфата бериллия. Постоянно «похищая» фосфаты, бериллий тем самым способствует ослаблению костной ткани - это и есть причина болезни.
Многие соединения бериллия ядовиты. Они могут стать причиной воспалительных процессов на коже и бериллиоза - специфического заболевания, вызываемого вдыханием бериллия и его соединений. При кратковременном вдыхании больших концентраций растворимых соединении бериллия возникает острый бериллиоз, представляющий собой раздражение дыхательных путей, иногда сопровождающееся отеком легких и удушьем. Есть и хроническая разновидность бериллиоза. Для нее характерны менее резкие симптомы, но большие нарушения в функциях всего организма.
Допустимые пределы содержания бериллия в воздухе очень малы - всего 0,001 мг/м 3 . Это значительно меньше допустимых норм для большинства металлов, даже таких токсичных, как свинец.
Для лечения бериллиоза применяют чаще всего химические соединения, связывающие ионы бериллия и способствующие их выведению из организма.

Бериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.

Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли "глюциний" (от греч. glykys - сладкий) или "глиций". Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные - в начале 30-х годов 20 века.

Распространение бериллия в природе . Бериллий - редкий элемент. Бериллий - типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.

Физические свойства . Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

ОПРЕДЕЛЕНИЕ

Бериллий - четвертый элемент Периодической таблицы. Обозначение - Be от латинского «beryllium». Расположен во втором периоде, IIА группе. Относится к металлам. Заряд ядра равен 4.

Бериллий мало распространен в земной коре . Он входит в состав некоторых минералов, из которых чаще всего встречается берилл Be 3 Al 2 (SiO 3) 6 .

Бериллий представляет собой металл серо-стального цвета (рис. 1) с плотной гексагональной кристаллической решеткой, довольно твердый и хрупкий. На воздухе покрывается оксидной пленкой, придающей ему матовый оттенок и обусловливающей пониженную химическую активность.

Рис. 1. Бериллий. Внешний вид.

Атомная и молекулярная масса бериллия

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

Поскольку в свободном состоянии бериллий существует в виде одноатомных молекул Be, значения его атомной и молекулярной масс совпадают. Они равны 9,0121.

Изотопы бериллия

В природе бериллий существует в виде единственного изотопа 9 Be. Массовое число равно 9. Ядро атома содержит четыре протона и пять нейтронов.

Существует одиннадцать искусственных изотопов бериллия с массовыми числами от 5-ти до 16-ти, из которых наиболее устойчивыми являются 10 Be с периодом полураспада равным 1,4 млн. лет и 7 Be с периодом полураспада 53 дня.

Ионы бериллия

На внешнем энергетическом уровне атома бериллия имеется два электрона, которые являются валентными:

В результате химического взаимодействия бериллий теряет свои валентный электроны, т.е. является их донором, и превращается в положительно заряженный ион (Be 2+):

Be 0 -2e → Be 2+ ;

В соединениях бериллий проявляет степень окисления +2.

Молекула и атом бериллия

В свободном состоянии бериллий существует в виде одноатомных молекул Be. Приведем некоторые свойства, характеризующие атом и молекулу лития:

Сплавы бериллия

Главной областью применения бериллия являются сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз (спал меди с 2,5% бериллия), применяются сплавы никеля с 2-4% бериллия, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов.

Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении.

Примеры решения задач

ПРИМЕР 1

Задание Напишите формулы кислородных соединений (оксидов) следующих элементов: а) бериллия (II); б) кремния (IV); в) калия (I); г) мышьяка (V).
Ответ Известно, что валентность кислорода в соединениях всегда равна II. Для того, чтобы составить формулу вещества (оксида) нужно осуществить следующую последовательность действий. Сначала записываем химические знаки элементов, входящих в состав сложного вещества и ставим над знаком каждого элемента валентность римской цифрой:

Находим наименьшее кратное чисел единиц валентностей: а) (II×II) = 4;б) (IV×II) = 8; в) (I×II) = 2; г) (V×II) = 10.

Разделим наименьшее общее кратное на число единиц валентности каждого элемента в отдельности (полученные частные и будут индексами в формуле):

а) 4/2 = 2 и 4/2 = 2, следовательно, формула оксида BeO;

б) 8/4 = 2 и 8/2 = 4, следовательно, формула оксида SiO 2 ;

в) 2/1 = 2 и 2/2 = 1, следовательно, формула оксида K 2 O;

г) 10/5 = 2 и 10/2 = 5, следовательно, формула оксида As 2 O 5 .